Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 11
Geosci. Model Dev., 12, 4781–4802, 2019
https://doi.org/10.5194/gmd-12-4781-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 4781–4802, 2019
https://doi.org/10.5194/gmd-12-4781-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 20 Nov 2019

Model description paper | 20 Nov 2019

A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996)

Tea Thum et al.
Related authors  
Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019,https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland
Yao Gao, Tiina Markkanen, Mika Aurela, Ivan Mammarella, Tea Thum, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences, 14, 4409–4422, https://doi.org/10.5194/bg-14-4409-2017,https://doi.org/10.5194/bg-14-4409-2017, 2017
Short summary
Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe
Tea Thum, Sönke Zaehle, Philipp Köhler, Tuula Aalto, Mika Aurela, Luis Guanter, Pasi Kolari, Tuomas Laurila, Annalea Lohila, Federico Magnani, Christiaan Van Der Tol, and Tiina Markkanen
Biogeosciences, 14, 1969–1987, https://doi.org/10.5194/bg-14-1969-2017,https://doi.org/10.5194/bg-14-1969-2017, 2017
Short summary
Assessing various drought indicators in representing summer drought in boreal forests in Finland
Y. Gao, T. Markkanen, T. Thum, M. Aurela, A. Lohila, I. Mammarella, M. Kämäräinen, S. Hagemann, and T. Aalto
Hydrol. Earth Syst. Sci., 20, 175–191, https://doi.org/10.5194/hess-20-175-2016,https://doi.org/10.5194/hess-20-175-2016, 2016
Related subject area  
Biogeosciences
GLOBAL-FATE (version 1.0.0): A geographical information system (GIS)-based model for assessing contaminants fate in the global river network
Carme Font, Francesco Bregoli, Vicenç Acuña, Sergi Sabater, and Rafael Marcé
Geosci. Model Dev., 12, 5213–5228, https://doi.org/10.5194/gmd-12-5213-2019,https://doi.org/10.5194/gmd-12-5213-2019, 2019
Short summary
A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?
Luke Gregor, Alice D. Lebehot, Schalk Kok, and Pedro M. Scheel Monteiro
Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-2019,https://doi.org/10.5194/gmd-12-5113-2019, 2019
Short summary
Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019,https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production
Nicolas Vuichard, Palmira Messina, Sebastiaan Luyssaert, Bertrand Guenet, Sönke Zaehle, Josefine Ghattas, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019,https://doi.org/10.5194/gmd-12-4751-2019, 2019
Short summary
Modelling biomass burning emissions and the effect of spatial resolution: a case study for Africa based on the Global Fire Emissions Database (GFED)
Dave van Wees and Guido R. van der Werf
Geosci. Model Dev., 12, 4681–4703, https://doi.org/10.5194/gmd-12-4681-2019,https://doi.org/10.5194/gmd-12-4681-2019, 2019
Short summary
Cited articles  
Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., and Reichstein, M.: Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model, Soil Biol. Biochem., 88, 390–402, 2015. a
Ammann, C., Flechard, C., Leifeld, J., Neftel, A., and Fuhrer, J.: The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosyst. Environ., 121, 5–20, https://doi.org/10.1016/j.agee.2006.12.002, 2007. a
Araújo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., and Kabat, P.: Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site, J. Geophys. Res.-Atmos., 107, LBA 58–1–LBA 58–20, https://doi.org/10.1029/2001JD000676, 2002. a
Archibald, S., Nickless, A., Govender, N., Scholes, R. J., and Lehsten, V.: Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data and satellite-derived burnt area data, Global Ecol. Biogeogr., 19, 794–809, https://doi.org/10.1111/j.1466-8238.2010.00568.x, 2010. a
Atkin, O. K., Meir, P., and Turnbull, M. H.: Improving representation of leaf respiration in large-scale predictive climate–vegetation models, New Phytol., 202, 743–748, https://doi.org/10.1111/nph.12686, 2014. a, b
Publications Copernicus
Download
Short summary
To predict the response of the vegetation to climate change, we need global models that describe the relevant processes taking place in the vegetation. Recently, we have obtained more in-depth understanding of vegetation processes and the role of nutrients in the biogeochemical cycles. We have developed a new global vegetation model that includes carbon, water, nitrogen, and phosphorus cycles. We show that the model is successful in evaluation against a wide range of observations.
To predict the response of the vegetation to climate change, we need global models that describe...
Citation