Articles | Volume 12, issue 12
https://doi.org/10.5194/gmd-12-5055-2019
https://doi.org/10.5194/gmd-12-5055-2019
Model description paper
 | 
04 Dec 2019
Model description paper |  | 04 Dec 2019

SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally and topographically self-consistent sea-level equation in glacial isostatic adjustment modeling

Giorgio Spada and Daniele Melini

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (26 Sep 2019)  Author's response
ED: Referee Nomination & Report Request started (01 Oct 2019) by Steven Phipps
RR by Volker Klemann (15 Oct 2019)
ED: Publish subject to technical corrections (25 Oct 2019) by Steven Phipps
AR by Giorgio Spada on behalf of the Authors (31 Oct 2019)  Author's response    Manuscript
Download
Short summary
Accurate modeling of the complex physical interactions between solid Earth, oceans, and ice masses in response to deglaciation processes is of paramount importance in climate change and geodesy, since ongoing effects of the melting of Late Pleistocene ice sheets still affect present-day observations of sea-level change, uplift rates, and gravity field. In this paper, we present SELEN4, an open-source code that can compute a broad range of physical predictions for a given deglaciation model.