Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 629–649, 2019
https://doi.org/10.5194/gmd-12-629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 629–649, 2019
https://doi.org/10.5194/gmd-12-629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 12 Feb 2019

Development and technical paper | 12 Feb 2019

DATeS: a highly extensible data assimilation testing suite v1.0

Ahmed Attia and Adrian Sandu

Related authors

A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions
Andrey A. Popov and Adrian Sandu
Nonlin. Processes Geophys., 26, 109–122, https://doi.org/10.5194/npg-26-109-2019,https://doi.org/10.5194/npg-26-109-2019, 2019
Short summary

Related subject area

Atmospheric Sciences
Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
Luke M. Western, Zhe Sha, Matthew Rigby, Anita L. Ganesan, Alistair J. Manning, Kieran M. Stanley, Simon J. O'Doherty, Dickon Young, and Jonathan Rougier
Geosci. Model Dev., 13, 2095–2107, https://doi.org/10.5194/gmd-13-2095-2020,https://doi.org/10.5194/gmd-13-2095-2020, 2020
Short summary
Configuration and intercomparison of deep learning neural models for statistical downscaling
Jorge Baño-Medina, Rodrigo Manzanas, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 2109–2124, https://doi.org/10.5194/gmd-13-2109-2020,https://doi.org/10.5194/gmd-13-2109-2020, 2020
Short summary
Modelling the mineralogical composition and solubility of mineral dust in the Mediterranean area with CHIMERE 2017r4
Laurent Menut, Guillaume Siour, Bertrand Bessagnet, Florian Couvidat, Emilie Journet, Yves Balkanski, and Karine Desboeufs
Geosci. Model Dev., 13, 2051–2071, https://doi.org/10.5194/gmd-13-2051-2020,https://doi.org/10.5194/gmd-13-2051-2020, 2020
Short summary
The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1
Mike Bush, Tom Allen, Caroline Bain, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Humphrey Lean, Adrian Lock, James Manners, Marion Mittermaier, Cyril Morcrette, Rachel North, Jon Petch, Chris Short, Simon Vosper, David Walters, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020,https://doi.org/10.5194/gmd-13-1999-2020, 2020
Short summary
The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory
Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann
Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020,https://doi.org/10.5194/gmd-13-1975-2020, 2020
Short summary

Cited articles

Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle filter in a high-dimensional system, Q. J. Roy. Meteor. Soc., 141, 484–503, 2015. a
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. a, b
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003. a
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, The Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA, vol. 11, ISBN 9781611974539, 2016. a
Publications Copernicus
Download
Short summary
This work describes DATeS, a highly extensible data assimilation package. DATeS seeks to provide a unified testing suite for data assimilation applications that allows researchers to easily compare different methodologies in different settings with minimal coding effort. The core of DATeS is written in Python. The main functionalities, such as model propagation and assimilation, can however be written in low-level languages such as C or Fortran to attain high levels of computational efficiency.
This work describes DATeS, a highly extensible data assimilation package. DATeS seeks to provide...
Citation