Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 629–649, 2019
https://doi.org/10.5194/gmd-12-629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 629–649, 2019
https://doi.org/10.5194/gmd-12-629-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 12 Feb 2019

Development and technical paper | 12 Feb 2019

DATeS: a highly extensible data assimilation testing suite v1.0

Ahmed Attia and Adrian Sandu
Related authors  
A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions
Andrey A. Popov and Adrian Sandu
Nonlin. Processes Geophys., 26, 109–122, https://doi.org/10.5194/npg-26-109-2019,https://doi.org/10.5194/npg-26-109-2019, 2019
Short summary
Related subject area  
Atmospheric Sciences
Validation of lake surface state in the HIRLAM v.7.4 numerical weather prediction model against in situ measurements in Finland
Laura Rontu, Kalle Eerola, and Matti Horttanainen
Geosci. Model Dev., 12, 3707–3723, https://doi.org/10.5194/gmd-12-3707-2019,https://doi.org/10.5194/gmd-12-3707-2019, 2019
Short summary
An optimization for reducing the size of an existing urban-like monitoring network for retrieving an unknown point source emission
Hamza Kouichi, Pierre Ngae, Pramod Kumar, Amir-Ali Feiz, and Nadir Bekka
Geosci. Model Dev., 12, 3687–3705, https://doi.org/10.5194/gmd-12-3687-2019,https://doi.org/10.5194/gmd-12-3687-2019, 2019
Short summary
Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02
Katherine R. Travis and Daniel J. Jacob
Geosci. Model Dev., 12, 3641–3648, https://doi.org/10.5194/gmd-12-3641-2019,https://doi.org/10.5194/gmd-12-3641-2019, 2019
Short summary
The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0)
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019,https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019,https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Cited articles  
Ades, M. and van Leeuwen, P. J.: The equivalent-weights particle filter in a high-dimensional system, Q. J. Roy. Meteor. Soc., 141, 484–503, 2015. a
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. a, b
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003. a
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, The Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA, vol. 11, ISBN 9781611974539, 2016. a
Publications Copernicus
Download
Short summary
This work describes DATeS, a highly extensible data assimilation package. DATeS seeks to provide a unified testing suite for data assimilation applications that allows researchers to easily compare different methodologies in different settings with minimal coding effort. The core of DATeS is written in Python. The main functionalities, such as model propagation and assimilation, can however be written in low-level languages such as C or Fortran to attain high levels of computational efficiency.
This work describes DATeS, a highly extensible data assimilation package. DATeS seeks to provide...
Citation