Bacon, D. P., Ahmad, N. N., Boybeyi, Z., Dunn, T. J., Hall, M. S.,
Lee, P. C. S., Sarma, R. A., Turner, M. D., Waight, K. T., Young,
S. H., and Zack, J. W.: A dynamically adapting weather and dispersion
model: the operational multiscale environment model with grid adaptivity
(OMEGA), Mon. Weather Rev., 128, 2044–2076, 2000. a

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of
numerical
weather prediction, Nature, 525, 47–55, 2015. a

Beljaars, A., Balsamo, G., Bechthold, P., Bozzo, A., Forbes, R.,
Hogan, R. J., Köhler, M., Morcrette, J. J., Tompkins, A.,
Viterbo, P., and Wedi, N. P.: The numerics of physical parameterization
in the ECMWF model, Front. Earth Sci., 6, 1–18,
https://doi.org/10.3389/feart.2018.00137, 2018. a

Benacchio, T., O'Neill, W. P., and Klein, R.: A blended
soundproof-to-compressible numerical model for small- to mesoscale
atmospheric dynamics, Mon. Weather Rev., 142, 4416–4438, 2014. a

Bénard, P., Vivoda, J., Mašek, J., Smolíková, P.,
Yessad, K., Smith, C., Brožková, R., and Geleyn, J.-F.:
Dynamical kernel of the Aladin-NH spectral limited-area model: Revised
formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 136,
155–169, 2010. a, b, c, d, e

Bubnová, R., Hello, G., Bénard, P., and Geleyn, J.-F.:
Integration of the fully elastic equations cast in the hydrostatic pressure
terrain-following coordinate in the framework of the ARPEGE/Aladin NWP
system, Mon. Weather Rev., 123, 515–535, 1995. a, b, c

Cossette, J.-F., Smolarkiewicz, P. K., and Charbonneau, P.: The
Monge-Ampère trajectory correction for semi-Lagrangian schemes, J.
Comput. Phys., 274, 208–229, 2014. a

Deconinck, W., Bauer, P., Diamantakis, M., Hamrud, M.,
Kühnlein,
C., Maciel, P., Mengaldo, G., Quintino, T., Raoult, B.,
Smolarkiewicz, P. K., and Wedi, N. P.: Atlas: A library for numerical
weather prediction and climate modelling, Comput. Phys. Commun., 220,
188–204, 2017. a, b

Diamantakis, M. and Augusti-Panareda, A.: A positive definite tracer
mass
fixer for high resolution weather and atmospheric composition forecasts,
ECMWF Technical Memorandum, 819, available at:
https://www.ecmwf.int/en/elibrary/17914-positive-definite-tracer-mass-fixer-high-resolution-weather-and-atmospheric (last access: 7 February 2019), 2017. a

Diamantakis, M. and Flemming, J.: Global mass fixer algorithms for conservative tracer transport in the ECMWF model, Geosci. Model Dev., 7, 965–979, https://doi.org/10.5194/gmd-7-965-2014, 2014. a, b

Diamantakis, M. and Magnusson, L.: Sensitivity of the ECMWF model to
semi-Lagrangian departure point iterations, Mon. Weather Rev., 144,
3233–3250, 2016. a

Domaradzki, J. A., Xiao, Z., and Smolarkiewicz, P. K.: Effective eddy
viscosities in implicit large eddy simulations of turbulent flows, Phys.
Fluids, 15, 3890–3893, 2003. a

Dörnbrack, A., Doyle, J. D., Lane, T. P., Sharman, R. D., and
Smolarkiewicz, P. K.: On physical realizability and uncertainty of
numerical solutions, Atmos. Sci. Lett., 6, 118–122, 2005. a

Eliasen, E., Machenbauer, B., and Rasmussen, E.: On a numerical method for
integration of the hydrodynamical equations with a spectral representation of
the horizontal fields, Tech. Rep. 2, Institute of Theoretical Meteorology,
University of Copenhagen, 1970. a

Emanuel, K. A.: Atmospheric convection, Oxford University Press on Demand,
580 pp., New York, Oxford,
1994. a

Forbes, R. M., Tompkins, A. M., and Untch, A.: A new prognostic bulk
microphysics scheme for the IFS, ECMWF Technical Memorandum, 649,
available at:
https://www.ecmwf.int/en/elibrary/9441-new-prognostic-bulk-microphysics-scheme-ifs
(last access: 7 February 2019)
2010. a, b

Gal-Chen, T. and Somerville, R. C. J.: On the use of a coordinate
transformation for the solution of the Navier-Stokes equations, J. Comput.
Phys., 17, 209–228, 1975. a

Hortal, M.: The development and testing of a new two-time-level
semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model, Q. J. Roy.
Meteor. Soc., 128, 1671–1687, 2002. a, b

Hortal, M. and Simmons, A.: Use of reduced Gaussian grids in spectral models,
Mon. Weather Rev., 119, 1057–1074, 1991. a, b, c

Klemp, J. B.: A terrain-following coordinate with smoothed coordinate
surfaces, Mon. Weather Rev., 139, 2163–2169, 2011. a

Klemp, J. B., Dudhia, J., and Hassiotis, A. D.: An upper gravity-wave
absorbing layer for NWP applications, Mon. Weather Rev., 136, 3987–4004,
2008. a

Knoll, D. A., Chacon, L., Margolin, L. G., and Mousseau, V. A.: On
balanced approximations for time integration of multiple time scale systems,
J. Comput. Phys., 185, 583–611, 2003. a

Kühnlein, C. and Smolarkiewicz, P. K.: An unstructured-mesh
finite-volume
MPDATA for compressible atmospheric dynamics, J. Comput. Phys., 334, 16–30,
2017. a, b, c, d, e, f, g, h, i, j, k, l

Kühnlein, C. and Smolarkiewicz, P. K.: A nonhydrostatic finite-volume
option for the IFS, ECMWF Newsletter, 158, 30–36,
https://doi.org/10.21957/sd92ack6p3, 2019. a, b

Kühnlein, C., Smolarkiewicz, P. K., and Dörnbrack, A.: Modelling
atmospheric flows with adaptive moving meshes, J. Comput. Phys., 231,
2741–2763, 2012. a, b, c, d, e, f, g

Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z.,
Smolarkiewicz, P., Szmelter, J., and
Wedi, N.: FVM 1.0: A nonhydrostatic finite-volume dynamical core formulation for
IFS, Zenodo, https://doi.org/10.5281/zenodo.1445597, 2018. a

Kurowski, M. J., Grabowski, W. W., and Smolarkiewicz, P. K.: Anelastic and
compressible simulation of moist deep convection, J. Atmos. Sci., 71,
3767–3787, 2014. a, b

Malardel, S. and Ricard, D.: An alternative cell-averaged departure
point
reconstruction for pointwise semi-Lagrangian transport schemes, Q. J. Roy.
Meteor. Soc., 141, 2114–2126, 2015. a

Malardel, S., Wedi, N. P., Deconinck, W., Diamantakis, M.,
Kühnlein, C., Mozdzynski, G., Hamrud, M., and Smolarkiewicz,
P. K.: A new grid for the IFS, ECMWF Newsletter, 146, 23–28, 2016. a, b, c, d

Orszag, S. A.: Transform method for the calculation of vector-coupled
sums:
application to the spectral form of the vorticity equation, J. Atmos. Sci.,
27, 890–895, 1970. a

Piotrowski, Z. P., Smolarkiewicz, P. K., Malinowski, S. P., and
Wyszogrodzki, A. A.: On numerical realizability of thermal convection, J.
Comput. Phys., 228, 6268–6290, 2009. a

Prusa, J. M. and Smolarkiewicz, P. K.: An all-scale anelastic model for
geophysical flows: dynamic grid deformation, J. Comput. Phys., 190, 601–622,
2003. a, b, c, d, e, f, g

Prusa, J. M., Smolarkiewicz, P. K., and Wyszogrodzki, A. A.: EULAG, a
computational model for multiscale flows, Comput. Fluids, 37, 1193–1207,
2008. a, b

Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T.,
Dent, D., and Hamrud, M.: Implementation of the semi-Lagrangian method
in a high-resolution version of the ECMWF forecast model, Mon. Weather
Rev., 123, 489–514, 1995. a, b, c

Robert, A., Henderson, J., and Turnbull, C.: An implicit time
integration scheme for baroclinic models of the atmosphere, Mon. Weather
Rev., 100, 329–335, 1972. a

Schär, C., Leuenberger, D., Fuhrer, O., Lüthi, D., and
Girard, C.: A new terrain-following vertical coordinate formulation for
atmospheric prediction models, Mon. Weather Rev., 130, 2459–2480, 2002. a

Simmons, A. J. and Burridge, D. M.: An energy and angular-momentum
conserving vertical finite-difference scheme and hybrid vertical
coordinates, Mon. Weather Rev., 109, 758–766, 1981. a, b

Smolarkiewicz, P. and Szmelter, J.: A nonhydrostatic unstructured-mesh
soundproof model for simulation of internal gravity waves, Acta Geophys.,
59, 1109–1134, 2011. a

Smolarkiewicz, P. K. and Dörnbrack, A.: Conservative integrals of
adiabatic Durran's equations, Int. J. Numer. Methods Fluids, 56, 1513–1519,
2008. a

Smolarkiewicz, P. K. and Grabowski, W.: The multidimensional positive
definite
advection transport algorithm: nonoscillatory option, J. Comput. Phys., 86,
355–375, 1990. a

Smolarkiewicz, P. K. and Margolin, L. G.: On forward-in-time
differencing
for fluids – Extension to a curvilinear framework, Mon. Weather Rev., 121,
1847–1859, 1993. a

Smolarkiewicz, P. K. and Margolin, L.: Variational methods for elliptic
problems in fluid models, in: ECMWF Proceedings, Workshop on developments
in numerical methods for very high resolution global models, Reading, UK,
137–159, 2000. a, b

Smolarkiewicz, P. K. and Pudykiewicz, J. A.: A class of semi-Lagrangian
approximations for fluids, J. Atmos. Sci., 49, 2082–2096, 1992. a

Smolarkiewicz, P. K. and Szmelter, J.: MPDATA: an edge-based
unstructured-grid formulation, J. Comput. Phys., 206, 624–649, 2005. a

Smolarkiewicz, P. K. and Szmelter, J.: Iterated upwind schemes for gas
dynamics, J. Comput. Phys., 228, 33–54, 2009. a

Smolarkiewicz, P. K., Temperton, C., Thomas, S. J., and Wyszogrodzki, A. A.:
Spectral Preconditioners for nonhydrostatic atmospheric models: extreme
applications, in: Proceedings of the ECMWF seminar series on recent
developments in numerical methods for atmospheric and ocean modelling,
Reading, UK, 203–220, 2004. a

Smolarkiewicz, P. K., Szmelter, J., and Wyszogrodzki, A. A.: An
unstructured-mesh atmospheric model for nonhydrostatic dynamics, J. Comput.
Phys., 254, 184–199, 2013. a

Smolarkiewicz, P. K., Kühnlein, C., and Wedi, N. P.: A consistent
framework for discrete integrations of soundproof and compressible PDEs of
atmospheric dynamics, J. Comput. Phys., 263, 185–205, 2014. a, b, c, d, e, f, g, h, i, j

Smolarkiewicz, P. K., Deconinck, W., Hamrud, M., Kühnlein, C.,
Mozdzynski, G., Szmelter, J., and Wedi, N. P.: A finite-volume module
for simulating global all-scale atmospheric flows, J. Comput. Phys., 314,
287–304, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n

Smolarkiewicz, P. K., Kühnlein, C., and Grabowski, W.: A
finite-volume module for cloud-resolving simulations of global atmospheric
flows, J. Comput. Phys., 341, 208–229, 2017. a, b, c, d, e, f, g

Smolarkiewicz, P. K., Kühnlein, C., and Wedi, N. P.: Semi-implicit
integrations of perturbation equations for all-scale atmospheric dynamics,
J. Comput. Phys., 376, 145–159, 2019. a, b

Szmelter, J. and Smolarkiewicz, P. K.: An edge-based unstructured mesh
discretisation in geospherical framework, J. Comput. Phys., 229, 4980–4995,
2010. a, b, c, d, e, f, g

Temperton, C.: Treatment of the Coriolis terms in semi-Lagrangian spectral
models, Atmos. Ocean, 35, 293–302, 2011. a

Temperton, C., Hortal, M., and Simmons, A.: A two-time-level
semi-Lagrangian global spectral model, Q. J. Roy. Meteor. Soc., 127,
111–127, 2001. a, b

Thuburn, J.: Some conservation issues for the dynamical cores of NWP and
climate models, J. Comput. Phys., 227, 3715–3730, 2008. a

Ullrich, P. A., Melvin, T., Jablonowski, C., and Staniforth, A.: A
proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical
cores, Q. J. Roy. Meteor. Soc., 140, 1590–1602, 2014. a, b

Ullrich, P. A., Jablonowski, C., Reed, K. A., Zarzycki, C., Lauritzen, P. H.,
Nair, R. D., Kent, J., and Verlet-Banide, A.: Dynamical Core Model
Intercomparison Project (DCMIP2016) Test Case Document,
available at: https://github.com/ClimateGlobalChange/DCMIP2016 (last
access: 6 February 2019), 2016. a, b, c, d

Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed,
K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C.,
Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein,
C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J.,
Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R.,
Reinecke, A., and Viner, K.: DCMIP2016: a review of non-hydrostatic dynamical
core design and intercomparison of participating models, Geosci. Model Dev.,
10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, 2017. a

Untch, A. and Hortal, M.: A finite-element scheme for the vertical
discretization of the semi-Lagrangian version of the ECMWF forecast model,
Q. J. Roy. Meteor. Soc., 130, 1505–1530, 2004. a, b

Waruszewski, M., Kühnlein, C., Pawlowska, H., and Smolarkiewicz,
P. K.: MPDATA: Third-order accuracy for variable flows, J. Comput. Phys.,
359, 361–379, 2018. a

Wedi, N. and Düben, P.: Extreme scaling for global weather forecasts
at O(1km) horizontal resolution, Geophys. Res. Abstr.,
EGU2017-8671, EGU General Assembly 2017, Vienna, Austria, 2017. a

Wedi, N. P.: The numerical coupling of the physical parametrizations to
the
dynamical equations in a forecast model, ECMWF Technical Memorandum, 274,
available at: https://www.weather.gov/media/sti/nggps/HIWPP_idealized_tests-v8 revised 05212015.pdf (last access: 7 February 2019)
1999. a, b, c

Wedi, N. P.: Increasing horizontal resolution in numerical weather
prediction and climate simulations: illusion or panacea?, Philos. T. R.
Soc. A, 372, 20130289, https://doi.org/10.1098/rsta.2013.0289, 2014. a, b, c

Wedi, N. P. and Smolarkiewicz, P. K.: Direct numerical simulation of the
Plumb McEwan laboratory analog of the QBO, J. Atmos. Sci., 63,
3226–3252, 2006. a

Wedi, N. P., Hamrud, M., and Mozdzynski, G.: A fast spherical harmonics
transform for global NWP and climate models, Mon. Weather Rev., 141,
3450–3461, 2013.
a, b, c, d

Wedi, N. P., Bauer, P., Deconinck, W., Diamantakis, M., Hamrud, M.,
Kühnlein, C., Malardel, S., Mogensen, K., Mozdzynski, G., and
Smolarkiewicz, P. K.: The modelling infrastructure of the Integrated
Forecasting System: Recent advances and future challenges, ECMWF Technical
Memorandum, 760, 1–48, 2015. a, b, c, d, e, f, g, h, i, j

Weller, H., Ringler, T., Piggott, M., and Wood, N.: Challenges
facing
adaptive mesh modeling of the atmosphere and ocean, B. Am. Meteorol.
Soc., 91, 105–108, 2010. a

Whitaker, J.: HIWPP non-hydrostatic dynamical core tests: Results from
idealized test cases, Tech. rep., available at: https://www.ecmwf.int/en/elibrary/13020-numerical-coupling-physical-parametrizations-dynamical-equations-forecast-model (last access: 7 February 2019), 2014. a

Williamson, D. L.: The evolution of dynamical cores for global atmospheric
models, J. Meteorol. Soc. Jpn., 85, 241–269, 2007. a

Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M.,
Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and
Thuburn, J.: An inherently mass-conserving semi-implicit semi-Lagrangian
discretization of the deep-atmosphere global non-hydrostatic equations, Q.
J. Roy. Meteor. Soc., 140, 1505–1520, 2014. a

Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using
variable-resolution meshes to model tropical cyclones in the Community
Atmosphere Model, Mon. Weather Rev., 142, 1221–1239, 2014. a

Zarzycki, C. M., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed,
K. A., Ullrich, P. A., Hall, D. M., Dazlich, D., Heikes, R., Konor, C.,
Randall, D., Chen, X., Harris, L., Giorgetta, M., Reinert, D., Kühnlein,
C., Walko, R., Lee, V., Qaddouri, A., Tanguay, M., Miura, H., Ohno, T.,
Yoshida, R., Park, S.-H., Klemp, J., and Skamarock, W.: DCMIP2016: The
Splitting Supercell Test Case, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-156, in review, 2018. a