Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 651-676, 2019
https://doi.org/10.5194/gmd-12-651-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 651-676, 2019
https://doi.org/10.5194/gmd-12-651-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 13 Feb 2019

Model description paper | 13 Feb 2019

FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

Christian Kühnlein et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christian Kühnlein on behalf of the Authors (17 Jan 2019)  Author's response    Manuscript
ED: Publish as is (22 Jan 2019) by Paul Ullrich
Post-review adjustments
AA: Author's adjustment | EA: Editor approval
AA by Christian Kühnlein on behalf of the Authors (11 Feb 2019)   Author's adjustment   Manuscript
EA: Adjustments approved (11 Feb 2019) by Paul Ullrich
Publications Copernicus
Download
Short summary
We present a novel finite-volume dynamical core formulation considered for future numerical weather prediction at ECMWF. We demonstrate that this formulation can be competitive in terms of solution quality and computational efficiency to the proven spectral-transform dynamical core formulation currently operational at ECMWF, while providing a local, more scalable discretization, conservative and monotone advective transport, and flexible meshes.
We present a novel finite-volume dynamical core formulation considered for future numerical...
Citation