Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 699–722, 2019
https://doi.org/10.5194/gmd-12-699-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 699–722, 2019
https://doi.org/10.5194/gmd-12-699-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 18 Feb 2019

Development and technical paper | 18 Feb 2019

A single-column ocean biogeochemistry model (GOTM–TOPAZ) version 1.0

Hyun-Chae Jung et al.

Related authors

The consistency between observations (TCCON, surface measurements and satellites) and CO2 models in reproducing global CO2 growth rate
Lev D. Labzovskii, Samuel Takele Kenea, Jinwon Kim, Haeyoung Lee, Shanlan Li, Young-Hwa Byun, Tae-Young Goo, and Young-Suk Oh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-114,https://doi.org/10.5194/acp-2020-114, 2020
Preprint under review for ACP
Short summary
Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea
Young-Suk Oh, S. Takele Kenea, Tae-Young Goo, Kyu-Sun Chung, Jae-Sang Rhee, Mi-Lim Ou, Young-Hwa Byun, Paul O. Wennberg, Matthäus Kiel, Joshua P. DiGangi, Glenn S. Diskin, Voltaire A. Velazco, and David W. T. Griffith
Atmos. Meas. Tech., 11, 2361–2374, https://doi.org/10.5194/amt-11-2361-2018,https://doi.org/10.5194/amt-11-2361-2018, 2018
Short summary

Related subject area

Biogeosciences
P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020,https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 2: Phenology and water cycle
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020,https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Dynamic upscaling of decomposition kinetics for carbon cycling models
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020,https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
CE-DYNAM (v1): a spatially explicit process-based carbon erosion scheme for use in Earth system models
Victoria Naipal, Ronny Lauerwald, Philippe Ciais, Bertrand Guenet, and Yilong Wang
Geosci. Model Dev., 13, 1201–1222, https://doi.org/10.5194/gmd-13-1201-2020,https://doi.org/10.5194/gmd-13-1201-2020, 2020
Short summary
A coupled pelagic–benthic–sympagic biogeochemical model for the Bering Sea: documentation and validation of the BESTNPZ model (v2019.08.23) within a high-resolution regional ocean model
Kelly Kearney, Albert Hermann, Wei Cheng, Ivonne Ortiz, and Kerim Aydin
Geosci. Model Dev., 13, 597–650, https://doi.org/10.5194/gmd-13-597-2020,https://doi.org/10.5194/gmd-13-597-2020, 2020
Short summary

Cited articles

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. 
Azhar, M. A., Canfield, D. E., Fennel, K., Thamdrup, B., and Bjerrum, C. J.: A model-based insight into the coupling of nitrogen and sulphur cycles in a coastal upwelling system, J. Geophys. Res.-Biogeo., 119, 264–285, https://doi.org/10.1002/2012JG002271, 2014. 
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets, Q. J. Roy. Meteor. Soc., 112, 693–709, https://doi.org/10.1002/qj.49711247308, 1986. 
Bruggenman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Modell. Softw., 61, 249–265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. 
Publications Copernicus
Download
Short summary
We developed the GOTM–TOPAZ, a single-column ocean biogeochemistry model, which simulates the biogeochemical processes including carbon and nutrient cycles. The model contains the bio–physical feedback by incorporating the oceanic heating due to chlorophyll absorption of solar radiation. We evaluate the model performance against available observations and a global ocean simulation, and this shows that our model reproduces the magnitude of and variability in biogeochemical variables well.
We developed the GOTM–TOPAZ, a single-column ocean biogeochemistry model, which simulates the...
Citation