Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 699-722, 2019
https://doi.org/10.5194/gmd-12-699-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 699-722, 2019
https://doi.org/10.5194/gmd-12-699-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 18 Feb 2019

Development and technical paper | 18 Feb 2019

A single-column ocean biogeochemistry model (GOTM–TOPAZ) version 1.0

Hyun-Chae Jung et al.
Related authors  
Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea
Young-Suk Oh, S. Takele Kenea, Tae-Young Goo, Kyu-Sun Chung, Jae-Sang Rhee, Mi-Lim Ou, Young-Hwa Byun, Paul O. Wennberg, Matthäus Kiel, Joshua P. DiGangi, Glenn S. Diskin, Voltaire A. Velazco, and David W. T. Griffith
Atmos. Meas. Tech., 11, 2361-2374, https://doi.org/10.5194/amt-11-2361-2018,https://doi.org/10.5194/amt-11-2361-2018, 2018
Short summary
Related subject area  
Biogeosciences
The quasi-equilibrium framework revisited: analyzing long-term CO2 enrichment responses in plant–soil models
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069-2089, https://doi.org/10.5194/gmd-12-2069-2019,https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy
Ahmed S. Elshall, Ming Ye, Guo-Yue Niu, and Greg A. Barron-Gafford
Geosci. Model Dev., 12, 2009-2032, https://doi.org/10.5194/gmd-12-2009-2019,https://doi.org/10.5194/gmd-12-2009-2019, 2019
Short summary
CO2 drawdown due to particle ballasting by glacial aeolian dust: an estimate based on the ocean carbon cycle model MPIOM/HAMOCC version 1.6.2p3
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869-1883, https://doi.org/10.5194/gmd-12-1869-2019,https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Towards end-to-end (E2E) modelling in a consistent NPZD-F modelling framework (ECOSMO E2E_v1.0): application to the North Sea and Baltic Sea
Ute Daewel, Corinna Schrum, and Jed I. Macdonald
Geosci. Model Dev., 12, 1765-1789, https://doi.org/10.5194/gmd-12-1765-2019,https://doi.org/10.5194/gmd-12-1765-2019, 2019
Short summary
Evaluating the E3SM land model version 0 (ELMv0) at a temperate forest site using flux and soil water measurements
Junyi Liang, Gangsheng Wang, Daniel M. Ricciuto, Lianhong Gu, Paul J. Hanson, Jeffrey D. Wood, and Melanie A. Mayes
Geosci. Model Dev., 12, 1601-1612, https://doi.org/10.5194/gmd-12-1601-2019,https://doi.org/10.5194/gmd-12-1601-2019, 2019
Short summary
Cited articles  
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. 
Azhar, M. A., Canfield, D. E., Fennel, K., Thamdrup, B., and Bjerrum, C. J.: A model-based insight into the coupling of nitrogen and sulphur cycles in a coastal upwelling system, J. Geophys. Res.-Biogeo., 119, 264–285, https://doi.org/10.1002/2012JG002271, 2014. 
Betts, A. K. and Miller, M. J.: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets, Q. J. Roy. Meteor. Soc., 112, 693–709, https://doi.org/10.1002/qj.49711247308, 1986. 
Bruggenman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Modell. Softw., 61, 249–265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. 
Publications Copernicus
Download
Short summary
We developed the GOTM–TOPAZ, a single-column ocean biogeochemistry model, which simulates the biogeochemical processes including carbon and nutrient cycles. The model contains the bio–physical feedback by incorporating the oceanic heating due to chlorophyll absorption of solar radiation. We evaluate the model performance against available observations and a global ocean simulation, and this shows that our model reproduces the magnitude of and variability in biogeochemical variables well.
We developed the GOTM–TOPAZ, a single-column ocean biogeochemistry model, which simulates the...
Citation