Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 735-747, 2019
https://doi.org/10.5194/gmd-12-735-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 735-747, 2019
https://doi.org/10.5194/gmd-12-735-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 19 Feb 2019

Methods for assessment of models | 19 Feb 2019

Similarities within a multi-model ensemble: functional data analysis framework

Eva Holtanová et al.
Related authors  
Novel indices for the comparison of precipitation extremes and floods: an example from the Czech territory
M. Müller, M. Kašpar, A. Valeriánová, L. Crhová, E. Holtanová, and B. Gvoždíková
Hydrol. Earth Syst. Sci., 19, 4641-4652, https://doi.org/10.5194/hess-19-4641-2015,https://doi.org/10.5194/hess-19-4641-2015, 2015
Short summary
Related subject area  
Atmospheric Sciences
Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation
Mona Kurppa, Antti Hellsten, Pontus Roldin, Harri Kokkola, Juha Tonttila, Mikko Auvinen, Christoph Kent, Prashant Kumar, Björn Maronga, and Leena Järvi
Geosci. Model Dev., 12, 1403-1422, https://doi.org/10.5194/gmd-12-1403-2019,https://doi.org/10.5194/gmd-12-1403-2019, 2019
Short summary
Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)
Georgy Ayzel, Maik Heistermann, and Tanja Winterrath
Geosci. Model Dev., 12, 1387-1402, https://doi.org/10.5194/gmd-12-1387-2019,https://doi.org/10.5194/gmd-12-1387-2019, 2019
Short summary
The community atmospheric chemistry box model CAABA/MECCA-4.0
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365-1385, https://doi.org/10.5194/gmd-12-1365-2019,https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Ensemble forecasts of air quality in eastern China – Part 2: Evaluation of the MarcoPolo–Panda prediction system, version 1
Anna Katinka Petersen, Guy P. Brasseur, Idir Bouarar, Johannes Flemming, Michael Gauss, Fei Jiang, Rostislav Kouznetsov, Richard Kranenburg, Bas Mijling, Vincent-Henri Peuch, Matthieu Pommier, Arjo Segers, Mikhail Sofiev, Renske Timmermans, Ronald van der A, Stacy Walters, Ying Xie, Jianming Xu, and Guangqiang Zhou
Geosci. Model Dev., 12, 1241-1266, https://doi.org/10.5194/gmd-12-1241-2019,https://doi.org/10.5194/gmd-12-1241-2019, 2019
Short summary
Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10
Christoph A. Keller and Mat J. Evans
Geosci. Model Dev., 12, 1209-1225, https://doi.org/10.5194/gmd-12-1209-2019,https://doi.org/10.5194/gmd-12-1209-2019, 2019
Short summary
Cited articles  
Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017. 
Belda, M., Holtanová, E., Kalvová, J., and Halenka, T.: Global warming-induced changes in climate zones based on CMIP5 projections, Clim. Res., 71, 17–31, https://doi.org/10.3354/cr01418, 2017. 
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate during this century, Clim. Change, 81(Supp. 1), 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007. 
Craven, P. and Wahba, G.: Smoothing noisy data with spline functions, Numerische Mathematik, 31, 377–403, 1978. 
Crhová, L. and Holtanová, E.: Simulated relationship between air temperature and precipitation over Europe: sensitivity to the choice of RCM and GCM, Int. J. Clim., 38, 1595–1604, https://doi.org/10.1002/joc.5256, 2018. 
Publications Copernicus
Download
Short summary
We present a methodological framework for the analysis of climate model uncertainty based on the functional data analysis approach, an emerging statistical field. The novel method investigates the multi-model spread, taking into account the behavior of entire simulated climatic time series, encompassing both past and future periods. We also introduce an innovative way of visualizing climate model similarities based on a network spatialization algorithm that enables an unambiguous interpretation.
We present a methodological framework for the analysis of climate model uncertainty based on the...
Citation