Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 749–764, 2019
https://doi.org/10.5194/gmd-12-749-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 749–764, 2019
https://doi.org/10.5194/gmd-12-749-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 20 Feb 2019

Development and technical paper | 20 Feb 2019

MP CBM-Z V1.0: design for a new Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical mechanism architecture for next-generation processors

Hui Wang et al.
Related authors  
Sensitivity of biogenic volatile organic compound emissions to leaf area index and land cover in Beijing
Hui Wang, Qizhong Wu, Hongjun Liu, Yuanlin Wang, Huaqiong Cheng, Rongrong Wang, Lanning Wang, Han Xiao, and Xiaochun Yang
Atmos. Chem. Phys., 18, 9583–9596, https://doi.org/10.5194/acp-18-9583-2018,https://doi.org/10.5194/acp-18-9583-2018, 2018
Short summary
Summer ozone variation in North China based on satellite and site observations
Lihua Zhou, Jing Zhang, Hui Wang, Wenhao Xue, Xiaohui Zheng, and Siguang Zhu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-537,https://doi.org/10.5194/acp-2018-537, 2018
Publication in ACP not foreseen
Short summary
GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors
Hui Wang, Huansheng Chen, Qizhong Wu, Junmin Lin, Xueshun Chen, Xinwei Xie, Rongrong Wang, Xiao Tang, and Zifa Wang
Geosci. Model Dev., 10, 2891–2904, https://doi.org/10.5194/gmd-10-2891-2017,https://doi.org/10.5194/gmd-10-2891-2017, 2017
Short summary
Related subject area  
Atmospheric Sciences
Development of the Real-time On-road Emission (ROE v1.0) model for street-scale air quality modeling based on dynamic traffic big data
Luolin Wu, Ming Chang, Xuemei Wang, Jian Hang, Jinpu Zhang, Liqing Wu, and Min Shao
Geosci. Model Dev., 13, 23–40, https://doi.org/10.5194/gmd-13-23-2020,https://doi.org/10.5194/gmd-13-23-2020, 2020
Short summary
An effective parameter optimization with radiation balance constraint in CAM5 (version 5.3)
Li Wu, Tao Zhang, Yi Qin, and Wei Xue
Geosci. Model Dev., 13, 41–53, https://doi.org/10.5194/gmd-13-41-2020,https://doi.org/10.5194/gmd-13-41-2020, 2020
Short summary
Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0)
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020,https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary
Algorithmic differentiation for cloud schemes (IFS Cy43r3) using CoDiPack (v1.8.1)
Manuel Baumgartner, Max Sagebaum, Nicolas R. Gauger, Peter Spichtinger, and André Brinkmann
Geosci. Model Dev., 12, 5197–5212, https://doi.org/10.5194/gmd-12-5197-2019,https://doi.org/10.5194/gmd-12-5197-2019, 2019
Short summary
Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7
Marco de Bruine, Maarten Krol, Jordi Vilà-Guerau de Arellano, and Thomas Röckmann
Geosci. Model Dev., 12, 5177–5196, https://doi.org/10.5194/gmd-12-5177-2019,https://doi.org/10.5194/gmd-12-5177-2019, 2019
Short summary
Cited articles  
Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J.: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res.-Atmos., 92, 14681–14700, 1987. 
Chen, H., Wang, Z., Qizhong, W. U., Jianbin, W. U., Yan, P., Tang, X., and Wang, Z.: Application of Air Quality Multi-Model Forecast System in Guangzhou: Model Description and Evaluation of PM10 Forecast Performance, Clim. Environ. Res., 18, 427–435, 2013. 
Chen, H. S., Wang, Z. F., Li, J., Tang, X., Ge, B. Z., Wu, X. L., Wild, O., and Carmichael, G. R.: GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions, Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, 2015. 
Feng, F., Wang, Z., Li, J., and Carmichael, G. R.: A nonnegativity preserved efficient algorithm for atmospheric chemical kinetic equations, Appl. Mathe. Comput., 271, 519–531, 2015. 
Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.: Modeling study of the 2010 regional haze event in the North China Plain, Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, 2016. 
Publications Copernicus
Download
Short summary
A new framework was designed for the widely used Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical kinetics kernel to adapt the single-instruction, multiple-data (SIMD) technology in next-generation processors like Knights Landing (KNL) to improve their calculation performance. The optimization is aimed at implementing the fine-grain level parallelization of CBM-Z. The test results showed significant acceleration with our optimization on both CPU and KNL platforms.
A new framework was designed for the widely used Carbon Bond Mechanism Z (CBM-Z) gas-phase...
Citation