Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
GMD | Articles | Volume 12, issue 3
Geosci. Model Dev., 12, 879–892, 2019
https://doi.org/10.5194/gmd-12-879-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 879–892, 2019
https://doi.org/10.5194/gmd-12-879-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 05 Mar 2019

Methods for assessment of models | 05 Mar 2019

DCMIP2016: the splitting supercell test case

Colin M. Zarzycki et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Colin Zarzycki on behalf of the Authors (10 Dec 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (11 Dec 2018) by Simone Marras
RR by Anonymous Referee #2 (26 Dec 2018)
ED: Reconsider after major revisions (27 Dec 2018) by Simone Marras
AR by Colin Zarzycki on behalf of the Authors (04 Feb 2019)  Author's response    Manuscript
ED: Publish as is (11 Feb 2019) by Simone Marras
Publications Copernicus
Short summary
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized supercell test case. Supercells are storm-scale weather phenomena that are a key target for next-generation, non-hydrostatic weather prediction models. We show that the dynamical cores of most global numerical models converge between approximately 1 and 0.5 km grid spacing for this test, although differences in final solution exist, particularly due to differing grid discretizations and numerical diffusion.
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized...
Citation