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1 Derivation of the distribution of the SMSM

kernel

The SMSM will shift the seed north, south, east or west with probability p,
to north-west, north-east, south-west or south-east with probability p/

√
2.

The discrete probability mass function is presented below
This shift can be seen as a two dimensional random variable (Y,X), where

the ’north-south’ Y component is independent of the ’east-west’ X compo-
nent. Furthermore, the distribution and hence all marginal moments are
identical.

The expected value for X is zero, E[X] = 0, as the probability mass
function is symmetric around 0. The same holds for the expected value for
Y , E[Y ] = 0.

The variance forX is given by V ar[X] = E[(X−E[X])2]. Straightforward
calculations give that

var[X] = (p+ 2p/
√

2)(∆x)2 + 0 + (p+ 2p/
√

2)(−∆x)2 (1)

= 2p(1 +
√

2)(∆x)2 (2)

It will be convenient to define this quantity as

σ2 = 2p(1 +
√

2)(∆x)2. (3)

Again, var[X] = var[Y ] by symmetries. Finally, the covariance between X
and Y is zero as the random variables are independent.
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The SMSM iterates this kernel several times, say K iterations. Let Z be
a column vector

Z =

(
X
Y

)
(4)

The multivariate central limit theorem then states that

lim
k→∞

1√
K

K∑
k=1

Zk − E[Z]
d→MVN(0,Σ) (5)

The interpretation of the multivariate central limit theorem is that a suitable
scaled version of the sum of random variables converges in distribution, see
Shiryaev [1996] to a multivariate Gaussian random variable.

Hence, we find that

K∑
k=1

(
X
Y

)
∈MVN

((
0
0

)
, K

(
σ2 0
0 σ2

))
. (6)

Remark
This derivation holds on more general conditions as well. It is possible

to derive the expected values, variances and covariances for any discrete
probability mass function.

It is then possible to still derive central limit theorem results even if the
random variable changes between the iterations. Formal conditions for the
convergence of sums of independent but not identically distributed random
variables are given for the Martingale central limit theorem, see Hall and
Heyde [2014].

2 Derivation of the computational costs of

the convolution

The computational complexity of the SMSM can be improved further if the
kernel is separable, i.e. if the kernel can be written as a product of univariate
terms. This is always possible for kernels that are joint densities for inde-
pendent random variables, as by definition the joint density is the product
of the marginal densities:

ks(x, y) = ks(x)ks(y). (7)

For separable kernels, it is possible to write the convolution:
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S(x, y)∗∗k(x, y) = S(x, y)∗∗(ks(x)∗∗ks(y)) = (S(x, y)∗∗k(x))∗∗ks(y). (8)

using the Helix transform where we used vector product of the marginal
factors is identical to the convolution between these vectors. The last step
was derived using the associative property of convolutions. The result is that
the convolution can be computed in two steps, first the convolution between
a matrix and a vector, leading to a computational cost of

O(N² R) followed by another convolution between a matrix and a vector,
hence the overall cost will be

O(N2K(R +R)). (9)
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