Define spaces for the higher-order pressure approximation and Lagrange multipliers
DGk1 = FunctionSpace(mesh, "DG", degree + 1)
DG0 = FunctionSpace(mesh, "DG", 0)
W = DGk1 * DG0
p, psi = TrialFunctions(W)
w, phi = TestFunctions(W)

Create local Slate tensors for the post-processing system
K = Tensor((inner(grad(p), grad(w)) + inner(psi, w) + inner(p, phi))*dx)
Use the computed pressure p_h and flux u_h in the right-hand side
F = Tensor((-inner(u_h, grad(w)) + inner(p_h, phi))*dx)
E = K.inv * F

Function for the post-processed scalar p^*_h
p_star = Function(DGk1, name="Post-processed scalar")
assemble(E.blocks[0], p_star) # Assemble only the first field (pressure)