Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 2, 13-32, 2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
17 Feb 2009
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
P. D. Williams1, T. W. N. Haine2, P. L. Read3, S. R. Lewis4, and Y. H. Yamazaki3 1National Centre for Atmospheric Science, Department of Meteorology, University of Reading, UK
2Department of Earth and Planetary Sciences, Johns Hopkins University, USA
3Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, UK
4Department of Physics and Astronomy, Open University, UK
Abstract. QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

Citation: Williams, P. D., Haine, T. W. N., Read, P. L., Lewis, S. R., and Yamazaki, Y. H.: QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments, Geosci. Model Dev., 2, 13-32,, 2009.
Publications Copernicus