Articles | Volume 4, issue 2
https://doi.org/10.5194/gmd-4-299-2011
https://doi.org/10.5194/gmd-4-299-2011
Development and technical paper
 | 
11 Apr 2011
Development and technical paper |  | 11 Apr 2011

Construction of non-diagonal background error covariance matrices for global chemical data assimilation

K. Singh, M. Jardak, A. Sandu, K. Bowman, M. Lee, and D. Jones

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023,https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary

Cited articles

Akella, S. and Navon, I. M.: Different approaches to model error formulation in 4D-Var: a study with high resolution advection schemes, Tellus A, 61(1), 112–128, https://doi.org/10.1111/j.1600-0870.2008.00362.x, 2009.
Beer, R., Glavich, T. A., and Rider, D. M.: Tropospheric emission spectrometer for the Earth Observing System's Aura satellite, Appl. Optics, 40(15), 2356–2367, https://doi.org/10.1364/AO.40.002356, 2001.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, https://doi.org/10.1029/2001JD000807, 2001.
Bowman, K. W., Worden, J., Steck, T., Worden, H. M., Clough, S., and Rodgers, C.: Capturing time and vertical variability of tropospheric ozone: A study using TES nadir retrievals, J. Geophys. Res., 107(D23), 4723, https://doi.org/10.1029/2002JD002150, 2002. \bibitem[Bowmann et al.(2006)] Bowman2006 Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J., Sarkissian, E., Osterman, G., Steck, T., Lou, M., Eldering, A., Shephard, M., Worden, H., Lampel, M., Clough, S., Brown, P., Rinsland, C., Gunson, M., and Beer, R.: Tropospheric Emission Spectrometer: Retrieval method and error analysis, IEEE T. Geosci. Remote, 44(5), 1297–1307, https://doi.org/10.1109/TGRS.2006.871234, May 2006.
Bowman, K. W., Jones, D. B. A., Logan, J. A., Worden, H., Boersma, F., Chang, R., Kulawik, S., Osterman, G., Hamer, P., and Worden, J.: The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors, Atmos. Chem. Phys., 9, 3563–3582, https://doi.org/10.5194/acp-9-3563-2009, 2009.
Download