
 CLIENT 1 CLIENT 2 CLIENT 3 CLIENT X . . .

 CLIENT 1.1 CLIENT 3.1

 CLIENT 3.2.1

MASTER SERVER

 CLIENT 3.2

Multi-Model-Driver (MMD)
Library Manual

Version 1.1

Astrid Kerkweg1 & Patrick Jöckel2

1 Institute for Atmospheric Physics
University of Mainz, 55099 Mainz, Germany

kerkweg@uni-mainz.de
2 Deutsches Zentrum für Luft-und Raumfahrt (DLR),

Institut für Physik der Atmosphäre,
Oberpfaffenhofen, D-82234 Weßling, Germany

patrick.joeckel@dlr.de

This manual is available as electronic supplement of our article “The 1-way on-line coupled
atmospheric chemistry model system MECO(n): Part II: On-line Coupling ” in Geosci. Model
Dev. (2011), available at: http://www.geosci-model-dev.net

2 A. Kerkweg and P. Jöckel: MMD Library Manual

Date: November 2, 2011

A. Kerkweg and P. Jöckel: MMD Library Manual 3

Contents

1 Introduction 4

2 The work flow in the MMD library 6

2.1 The initialisation phase . 6

2.2 The time loop . 8

2.3 The finalisation phase . 8

3 Detailed library description 9

3.1 The Fortran95 part of the MMD library . 9

3.1.1 mmd utilities . 9

3.1.2 mmd handle communicator.f90 . 14

3.1.3 mmd mpi wrapper . 18

3.1.4 mmd client.f90 . 20

3.1.5 mmd server.f90 . 23

3.1.6 mmd test.f90 . 27

3.2 The C part of the MMD library . 30

3.2.1 cfortran.h . 31

3.2.2 mmdc util.h . 31

3.2.3 mmdc util.c . 32

3.2.4 mmdc server.c . 32

3.2.5 mmdc client.c . 33

3.3 Example . 34

A Glossary 37

4 A. Kerkweg and P. Jöckel: MMD Library Manual

1 Introduction

The Multi-Model-Driver (MMD) was developed to carry out the on-line coupling between models, i.e., two or
more models run concurrently within the same message passing interface (MPI) environment and exchange data
by MMD. Following a client-server approach, the server (driving model) provides data to a client model. For
the data exchange the sending and the receiving side must be distinguished. In the following the model sending
the information is called “server” and the model receiving data is named “client”. The other model in the
corresponding model pair is further denoted as remote model1, i.e., the remote model of the server is the client
model and vice versa.

MMD consists of three parts:

• the Multi-Model-Driver (MMD) library provides all routines necessary for the data exchange between
executables of basemodels,

• the server submodel (MMDSERV) providing the data to the client model(s) and

• the client submodel MMDCLNT receiving the data from the server and processing it to provide the data
to the client model in an appropriate way.

While the MMD library manages the communication between the server and the client submodels, the client
submodel MMDCLNT controls the data exchange via namelist.

In this manual we focus on the technical structure and functionality of the MMD library. A description of
MMDCLNT and MMDSERV is provided within the “MMD user manual”, available in the same electronic
supplement as this manual. The MMD library manages the data exchange very efficiently, as the field exchange
during the time integration is implemented as point-to-point, single-sided, non-blocking MPI communication.

The MMD library is build in a way that an arbitrary number of models can be run concurrently within the
same MPI environment. Each model can be server for an arbitrary number (including zero) of other models
and is client of exactly one model. The only exception is the global or “coarsest” model of the setup. This one
drives all the other models (direct or indirect via other clients), but is not client of any other model itself. We
call this model master server. The figure on the front page of the manual gives an example for a possible model
cascade. Here, the master server “serves” 4 clients (CLIENT 1,2,3 and X). CLIENT 1 and 3 are server for other
clients as well. CLIENT 1 has one client (1.1) and CLIENT 3 serves two clients (3.1 and 3.2). CLIENT 3.2 is
again server model for CLIENT 3.2.1. The clients of one server are completely independent of each other.

The only restrictions for such a model cascade are those normally valid for the nesting of limited-area models
into coarser models. For instance, each client model domain, including an additional boundary required for
interpolations from the coarser to the finer grid, has to be embedded entirely into the server domain.

The MMD library is mainly written in Fortran95 and partly in C. On the one hand this is necessary, as the
data exchange during the time loop is implemented as single-sided communication. The buffer for the data
exchange is allocated by the MPI subroutine MPI_alloc_mem which works properly only in C, as it hands back
the memory address which cannot be used in Fortran95. On the other hand the library must be able to handle
Fortran95 POINTERs which – in contrast to C pointers – do not have to be consecutive in memory.

The MMD library comprises mainly server and client specific routines organised in modules USEd by the
MMDSERV and MMDCLNT submodels, respectively, and it contains partly routines USEd by the server and
client basemodels directly. The names of the modules and the subroutines or functions indicate, whether the
language is C or Fortran95. C files or functions start with ’mmdc_’, while Fortran95 files or routines begin
with ’mmd_’. Fig. 1 illustrates the dependencies of the MMD library modules and their internal hierarchy. The
arrows point into the direction of USagE. The Fortran95 part of the library (bluish colours in Fig. 1) comprises
six modules:

• mmd_client.f90, mmd_server.f90 and mmd_test.f90 are directly used by the client and server submodels
(MMDCLNT and MMDSERV, respectively). All three module files in turn USE the three modules
mmd_mpi_wrapper.f90, mmd_handle_communicator.f90 and mmd_utilities.f90.

1Throughout the manual some words are in italics. Their meaning is explained in the appendix of the manual.

A. Kerkweg and P. Jöckel: MMD Library Manual 5

mmd_client.f90

mmd_utilities.f90

mmd_server.f90

MMD_handle_communicator.f90
mmd_mpi_wrapper.f90

mmd_test.f90

cfortran.h

mmdc_util.h

mmdc_client.c mmdc_server.cmmdc_util.c

 MMDCLNT MMDSERV

MMD library

Figure 1: Hierachy of the MMD module files. Bluish colours indicate modules written in Fortran95, reddish
colours denote C files. Arrows point in the direction of USagE, e.g., mmd utilities.f90 is used by all other
Fortran95 modules.

• mmd_mpi_wrapper.f90 supplies high level interface routines, which simplify the communication between
server and client and offer the possibility for alternative communication implementations without the need
for changing the interfaces.

• mmd_handle_communicator.f90 contains the subroutines for the MPI-communicator definitions in the
coupled system.

• Finally, mmd_utilities.f90 hosts the definition of the Fortran95 structures storing the information about
the MPI-communicators and the Fortran95 structure keeping the information and data of the exchange
fields.

The C part of the library (reddish colours in Fig. 1) contains five files:

• mmdc_client.c and mmdc_server.c contain the client and server specific functions for the data exchange
management.

6 A. Kerkweg and P. Jöckel: MMD Library Manual

• mmdc_util.c supplies the declaration of the data structures.

• All three C modules access the header file mmdc_utils.h which itself uses the header file cfortran.h.

For the sake of a better readability only the file names without the language suffixes (.f90 or .c) are used in
the remaining text.

The next Section provides an overview of the MMD library by describing the typical work flow of the library
routines. More detailed explanations are provided in Sect. 3. Subsect. 3.1 describes the Fortran95 routines,
Subsect. 3.2 the C functions of the MMD library. Last but not least, Subsect. 3.3 provides an example to
illustrate the data exchange.

2 The work flow in the MMD library

This section illustrates the interaction and the calling sequence of the MMD library subroutines and functions,
which are described in detail in Sect. 3. Fig. 2 shows the call tree. The yellow area indicates the initialisation
phase of a simulation with MMD coupled models. The cyan part highlights those routines called during the
integration phase and the lilac part points to the finalisation phase. The left hand side lists the routines called by
the client, the right hand side those called by the server. Subroutines on the same level are called concurrently
from the corresponding entry points in client and server. Note that the names of the client specific routines
always start with “MMD_C_”, whereas the names of the server specific routines begin with “MMD_S_”. The names
of the routines for checking the consistency of the setup of the coupled models start with “MMD_testC_” or
“MMD_testS_” depending on the calling model, client or server, respectively.

2.1 The initialisation phase

At the very beginning the MPI-communicators of the different models/parallel processes are determined. In
addition to the “global” MPI-communicator MPI_comm_world containing all process entities2 (PEs), a group
communicator is set up for each model. This is achieved by the subroutine MMD_get_model_communicator. It is
called during the MPI setup procedure of all models. Within this subroutine the namelist file MMD_layout.nml,
which contains all information defining the coupling layout of all models for the current simulation, is read
by the process (PE) with m_world_rank = 0 and broadcasted to all other processes. Afterwards the com-
municators are defined based on the namelist information, i.e., a group of PEs is associated to each model
and the corresponding group communicator is defined. The subroutines MMD_get_model_communicator and
MMD_FreeMem_Communicator are the only subroutines, which are called directly from the basemodels. All other
routines are called from within the MESSy submodels carrying out the coupling (MMDCLNT and MMDSERV).

• In the server specific subroutine MMD_S_Allocate_Client the variable Clients of a TYPE containing all
required information about the client models and about the requested data is allocated to the actual
number of client models of each individual server. For instance, in the example on the front page the
master server requires space for 4 clients, whereas CLIENT 1 provides data to only one client.

• In the subroutines MMD_S_Init and MMD_C_Init the MMD internal variables containing the information
about the remote model(s) in form of structures are allocated in the correct size according to the coupling
layout. Furthermore, the setup routines for the C-core of MMD, MMDc_C_Init and MMDc_S_Init, are
called. Within these routines the communicators for the communication on the C language level are
constructed and the information about the size (number of processes occupied by the remote model) is
handed back to the Fortran95 part of the library.

• As a first step on the way to the data exchange between the models, the client model provides the list of
server and client channel and channel object names of the required data arrays and the corresponding resp-
resentation to the MMD library by calling the subroutine MMD_Set_DataArray_Name. Within the library
the client channel and channel object names are stored within variable Me, which is of TYPE ClientDef,

2Here equivalent to MPI tasks.

A. Kerkweg and P. Jöckel: MMD Library Manual 7

Client Server

MMD_C_Init MMD_S_Init
MMDc_C_Init MMDc_S_Init

MMD_S_ALLOCATE_CLIENT

MMD_testS_SetupMMD_testS_Setup
MMD_testC_GetTestPtr
MMD_C_Set_DataArray_Name MMD_S_Get_DataArray_Name

MMD_testS_Fill

MMD_S_Set_IndexlistMMD_C_Get_Indexlist
MMD_testS_FinishFill
MMD_testS_GetTestPtr

MMD_C_Set_DataArray MMD_S_Set_DataArray
MMD_C_SetInd_and_AllocMem MMD_S_SetInd_and_AllocMem

MMD_C_GetBuffer MMD_S_FillBuffer

(MMD_testC_Compare)

MMD_testC_FreeMem
MMD_C_FreeMem

MMD_testS_FreeMem
MMD_S_FreeMem

MMDc_C_SetInd_and_Mem

MMDc_C_GetBuffer MMDc_S_FillBufferC
MMDc_S_BufferFull

MMDc_S_SetInd_and_Mem

In
iti

al
is

in
g

P
ha

se

Ti
m

e
Lo

op

MMD_get_model_communicator

MMD_FreeMem_communicator

MMD_S_GetNextArray
MMD_S_Send_Repr

MMD_C_GetNextArray

Fi
na

l P
ha

se

MMD_C_Get_Repr

MMD_C_Set_DataArray_EndList

Figure 2: Call tree of the MMD library: blue are the names of the client and server specific Fortran95 routines
of the MMD library, red are the C functions, whereas the black colour indicates the routines required for the
test setup (written in Fortran95).

i.e., the overall coupling information structure for the client part of the library (see Sect. 3.1.1). Further-
more, the server channel and channel object names and their representations are sent to the server model.
On the server side the data is received and processed within the subroutine MMD_S_Get_DataArray_Name.
Here, the channel and channel object names of the server exchange fields and their representations are
stored in the information structure (Clients) for the respective client. These information will be accessed
later on, with the use of the functions MMD_S_GetNextArray and MMD_C_GetNextArray on server and
client side, respectively.

• Additional preparations are performed before the data exchange can take place:

– First, the information is required, which server PE exchanges which parts of its horizontal grid
with which client PE and their location in the client grid. Hereafter, this information is ref-
ered to as “index_list”. It is provided by the server submodel MMDSERV to the MMD li-

8 A. Kerkweg and P. Jöckel: MMD Library Manual

brary as parameter to the subroutine MMD_S_Set_Indexlist. Within this subroutine the list is
evaluated and sent to the client model. The client model receives and processes this list within
the subroutine MMD_C_Get_Indexlist. For further details see the description of the subroutine
MMD_S_Set_Indexlist in Sect. 3.1.5.

– Second, a test is initiated for checking the data exchange. For this the subroutines with the names
starting with ’MMD_test’ are used.

– Third, the library needs to connect channel and channel object to the (Fortran95-)POINTERs.

∗ On the server side, the list of the names of the exchange fields established by the subroutine
MMD_S_Get_DataArray_Name is provided to MMDSERV by the subroutine MMD_S_GetNextArray.
For each of the required fields the MESSy submodel MMDSERV provides a 4D-POINTER to the
memory of the respective exchange field as parameter to the subroutine MMD_S_Set_DataArray.
Additionally, the local dimensions and the axis string related to this particular field are parameter
to this subroutine. This information is stored in the respective structure components and anal-
ysed: the dimensions determine the memory size (buffer length) required for the data exchange.
The axis string is used later during the integration to re-arrange the data (before the actual data
exchange) into a 1D-array. The sum over all individual buffer sizes is the buffer length required for
the data exchange of all data fields from each individual PE to all client PEs. This number is used
to actually allocate the required memory via MPI by the C function MMDc_S_SetInd_and_Mem,
which is called via the Fortran95 subroutine MMD_S_SetInd_and_AllocMem.

∗ For the client the provision of the data POINTER via the subroutines and functions
MMD_C_Get_DataArray_Name, MMD_C_GetNextArray and MMD_C_Set_DataArray works similar.
The dimension and axis string information is used during the integration phase to re-order the
1D-array received from the server into the 4D data arrays as requested by the client model.

At this point all preparations required for the data exchange are finished and the actual data exchange starts.

2.2 The time loop

As the data exchange was fully prepared in the initialisation phase, the buffers only need to be filled (server)
and read (client) within the time loop. First the server has to fill the buffer. This is done by the MMD
library subroutines MMD_S_FillBuffer and MMDc_S_FillBuffer (see Sect. 3.1.5). After the buffer is filled, it is
made accessible for the client side and a barrier is set to the server side by the subroutine MMD_S_BufferFull.
Consequently, the buffer can now be read by the client part of the MMD library. Within the subroutines
MMD_C_GetBuffer and MMDc_C_GetBuffer the (1D-)buffers are read and re-arranged to the 4D-data fields
according to the corresponding axis string and the local dimensions. After the buffers are completely read, the
barrier set from the server is released by the client and a new barrier is set to prevent the client from accessing
the same buffer twice.

To detect errors in the data exchange the subroutine MMD_testC_Compare is called after the first data exchange.
The transferred test arrays containing the geographical longitudes and latitudes are compared to the original
arrays of the client. If they do not match, the simulation is terminated with an error message.

2.3 The finalisation phase

At the end of the simulation the memory allocated during the initialisation must be deallocated. The test
arrays are deallocated within the subroutines MMD_testC_FreeMem and MMD_testS_FreeMem, respectively. The
memory allocated within the MMD library data structures is released in MMD_C_FreeMem and MMD_S_FreeMem
for client and server model, respectively. Last but not least, the memory allocated by the subroutine
MMD_get_model_communicator is released within the subroutine MMD_FreeMem_Communicator.

A. Kerkweg and P. Jöckel: MMD Library Manual 9

3 Detailed library description

In this section the definitions and routines of the MMD library are described in detail. The Fortran95 and the
C part are explained in individual subsections. Each of the subsections is split into subsubsections dedicated to
one (module) file each. Each subsubsection contains the interface declarations of the routines of the respective
module. Their content and usage are described subsequently. The section is closed with an example illustrating
the definitions of the index and length variables used in the C and the Fortran95 part.

3.1 The Fortran95 part of the MMD library

The Fortran95 part of the library is the interface between the coupled models (more precise between the coupling
submodels MMDCLNT and MMDSERV) and the C routines providing the infrastructure for the data exchange
during the integration. The library modules are described in the order of their dependencies. As the three main
interface modules mmd_client.f90, mmd_server.f90 and mmd_test.f90 are completely independent of each
other they are described in an arbitrary order.

3.1.1 mmd utilities

mmd_utilities is used by all other Fortran95 modules. It provides the definition of the data structures con-
taining all information about the model system setup, the communicators, about the structure of the data, the
index_list for the data exchange between two models and the definition of some PARAMETERs controlling the
coupling procedure:

! **
! from messy_main_constants_mem.f90
INTEGER, PARAMETER, PUBLIC :: MMD_DP = SELECTED_REAL_KIND(12,307)
INTEGER, PARAMETER, PUBLIC :: MMD_i8 = SELECTED_INT_KIND(14)

INTEGER, PARAMETER :: DP=MMD_DP

! Length of Data Array Name
INTEGER,PARAMETER, PUBLIC :: STRLEN_CHANNEL = 23
! Length of Data Array Name
INTEGER,PARAMETER :: STRLEN_OBJECT = 55
INTEGER,PARAMETER, PUBLIC :: STRLEN_ULONG = 256
! **

! **
! Definition PARAMETER
INTEGER,PARAMETER,PUBLIC :: MMD_ServerIsECHAM = 1
INTEGER,PARAMETER,PUBLIC :: MMD_ServerIsCOSMO = 2
! return status
INTEGER,PARAMETER,PUBLIC :: MMD_STATUS_OK = 0
INTEGER,PARAMETER,PUBLIC :: MMD_DA_NAME_ERR = 10

INTEGER,PARAMETER,PUBLIC :: MMD_MAX_MODELL = 64
INTEGER,PARAMETER,PUBLIC :: MMD_MPI_REAL = MPI_DOUBLE_PRECISION
! **

The first block defines the KIND PARAMETERs and the string lengths required within the library identically to the
MESSy definitions. The second block consists of MMD internal settings. In the client MESSy submodel for the
coupling (MMDCLNT) the server type has to be known, as some parts of the interpolation/coupling procedure
depend on the server type. The INTEGER PARAMETERs MMD_ServerIsECHAM and MMD_ServerIsCOSMO are

10 A. Kerkweg and P. Jöckel: MMD Library Manual

used to indicate, whether the server is ECHAM or COSMO. This list can be expanded by newly introduced
models. MMD_STATUS_OK and MMD_DA_NAME_ERR define some specific error values. MMD_MAX_MODELL determines
the number of models maximally handled by MMD. If more than 64 models shall be run in parallel by MMD,
this number needs to be increased within the code.

The TYPE ClientDef includes all information required to associate the correct data, dimensions of data fields
and data points to each other:

TYPE ClientDef
! NUMBER OF CLIENT PEs
INTEGER :: inter_npes = 0
! CLIENT Id
INTEGER :: ClientId = 0
! STRUCTURE FOR EACH PE
TYPE(PeDef), DIMENSION(:), POINTER :: PEs
! INDEX LIST OF SERVER POINTS
INTEGER,DIMENSION(:,:),ALLOCATABLE :: index_list_2d
! Number of Points in index_list
INTEGER :: NrPoints
! ARRAY INFORMATION STRUCTURE (SAME ON ALL PEs)
TYPE(ArrayDef_list), POINTER :: Ar => NULL()
TYPE(ArrayDef_list), POINTER :: ArrayStart => NULL()

END TYPE ClientDef

This structure defines the setup of exactly one client. Therefore the client side needs one scalar variable of the
type of these structures, whereas each server needs an array dimensioned by the number of clients. inter_npes
gives the number of processes (PEs) used by the remote model, i.e., on the client side the number of server PEs
is stored, whereas on the server side the number of client PEs is of interest.

ClientId is the identification number (ID) of the client model within the overall MMD setup. It is equal to
the instance number, e.g. for the example given in Sect. 3.1.2 and Fig. 5, COSMO/MESSy 3.2 has ClientId=8.
The ClientId is only used on the server side.

During the initialisation of MMD the structure component PEs will be dimensioned with inter_npes as the
structure components of TYPE PeDef get specific values for each PE of the remote model:

TYPE PeDef
INTEGER :: NrEle ! Number of Elements
TYPE(xy_ind), POINTER, DIMENSION(:) :: locInd

END TYPE PeDef

NrEle is the number of elements exchanged with each individual remote PE3: For a client NrEle is the number
of grid points the client PE receives from a specific server PE. For a server NrEle is the number of grid points,
which this server PE provides to a specific client PE. locInd is dimensioned by NrEle and contains the index
pairs for each exchanged grid point in the particular local decomposed grid:

! Pair of indices in horizontal plane
TYPE xy_ind

INTEGER :: i
INTEGER :: j

END TYPE xy_ind

Thus, for the client, locInd contains the index pairs of the local decomposed raw field as received from the
server (here after denoted in-field), whereas for the server locInd stores the indices in its own local decomposed
model domain.

Fig. 3 together with Table 1 illustrates these dependencies:

A. Kerkweg and P. Jöckel: MMD Library Manual 11

1

1

1 1

2

2

2 23 34 45 5
Server

PE 0 PE 1

PE 2 PE 3

Client

1

1

1 1

2

2

2 23 34 45 5

PE 0 PE 1

PE 2 PE 3

1

A

B

2

1
2

1

1 1

3
PE 2

P
E

 0

P
E

 1

1 2

1
2

1 1

3
PE 2

P
E

 0

P
E

 1

Figure 3: Illustration of possible model domain overlaps and the definition of the variable NrEle. A detailed
explanation is provided in the text.

server client (x,y) (x,y,)
PE PE NrEle index pairs index pair

server client
0 0 0 - -
0 1 0 - -
0 2 0 - -
1 0 1 (1,2) (2,1)
1 1 1 (2,2) (2,1)
1 2 0 - -
2 0 0 - -
2 1 0 - -
2 2 1 (5,2) (1,1)
3 0 1 (1,1) (1,1)
3 1 1 (2,1) (1,1)
3 2 2 (1,2)(2,2) (2,1)(3,1)

Table 1: Illustration of the data exchange between server and client PEs. NrEle is the number of elements
exchanged, whereas the index pairs show the identification of the grid points in the server domain and the
in-field grid points in the client domain.

Part A of Fig. 3 shows two model domains. The left hand side illustrates the decomposition of the server domain
(blue). The server is run on 4 PEs. The decomposed model domains consist of 5x2 model grid boxes each. The

3Note: as the library is run in the decomposition of the respective model, NrEle and locInd are different and specific for each
PE.

12 A. Kerkweg and P. Jöckel: MMD Library Manual

model domain of the client (red) was chosen to illustrate the grid association. The client model is run on 3 PEs.
The decomposed domains of PE 0 and PE 1 consist of 2x1 model grid boxes, that of PE 2 of 3x1 grid boxes.
Part B of the figure shows the overlap of the in-field model domain of the client and the server domain. Table 1
gives the number (NrEle) and the index pairs of exchanged elements for this example4: The server PE 3 sends
the data of four grid boxes in total. One element is sent to client PE 0 ((1,1)s,PE3 → (1,1)c,PE0), one element
(2,1)s,PE3 is sent to client PE 1 and client PE 2 gets two elements ((1,2)s,PE3 and (2,2)s,PE3). The client PE
2 operates on three grid boxes and needs to get this number of elements. The client grid box (1,1)c,PE2 on PE
2 is filled by server PE 2, which sends its grid box (5,1)s,PE2. The other two elements are sent by server PE 3:
client grid box (2,1)c,PE2 gets the data from server grid box (1,2)s,PE3 and client grid box (3,1)c,PE2 gets the
data of server grid box (2,2)s,PE3.

The information, which client in-field grid box corresponds to which server model domain grid box is saved
for one client-server pair in the structure component index_list_2d. index_list_2d is only used during the
initialisation phase and deallocated afterwards. Further details about index_list_2d are provided in Sect.
3.1.5.

The structure component NrPoints is only relevant on the server side of the library. It is the overall number of
horizontal elements the current server PE has to send to all PEs of one client. In the example this would be 0
for server PE 0, 2 for server PE 1, 1 for server PE 2 and 4 for server PE 3.

Last but not least, the structure components Ar and ArrayStart define a concatenated list, where ArrayStart
points to the first element of the list and Ar to the actual one. The TYPE ArrayDef_list

TYPE ArrayDef_list
TYPE(ArrayDef) :: arrdef
TYPE(ArrayDef_list), POINTER :: next

END TYPE ArrayDef_list

constructs a concatenated list of structures of TYPE ArrayDef:

TYPE ArrayDef
CHARACTER(LEN=STRLEN_CHANNEL) :: channel = ’’ ! Name of Channel
CHARACTER(LEN=STRLEN_OBJECT) :: object = ’’ ! Name of Object
CHARACTER(LEN=STRLEN_OBJECT) :: repr = ’’ ! Representation

! of Object
REAL(DP), POINTER, DIMENSION(:,:,:,:) :: p4 => NULL()

CHARACTER(LEN=4) :: dim_order = ’ ’ ! Order of dimensions
INTEGER, DIMENSION(4) :: xyzn_dim = 0 ! index of x,y,z,n dimension
INTEGER, DIMENSION(4) :: dim = 0 ! Size of Dimensions
! ArrLen and ArrIdx are different on each remote PE
! Dimension of Array moved
INTEGER, DIMENSION(:), POINTER :: ArrLen => NULL()
! Start Index of Array moved
INTEGER, DIMENSION(:), POINTER :: ArrIdx => NULL()

END TYPE ArrayDef

This TYPE contains the description of one exchange field. For the unambiguously identification of each exchange
field, ArrayDef contains the channel name, the channel object name and the representation of the object. p4 is
the POINTER to the respective memory, i.e., to the in-field on the client side and to the variable on the server
side. The second block in the structure definition of ArrayDef contains the information about the dimensions
of the array:

4Hereafter, individual horizontal elements are denoted using the syntax (i,j)s or c, PE n. i and j are the index pair in the
respective local parallel decomposed grid, s or c indicates server or client model, respectively, and the respective PE of the server
or client model is denoted by PE n, with n being the number of the PE.

A. Kerkweg and P. Jöckel: MMD Library Manual 13

description representation dim order xyzn dim dimension length
COSMO 3d ’GP 3D MID’ ’XYZ-’ (1,2,3,-1) (ie,je,ke,-1)
ECHAM5 3d ’GP 3D MID’ ’XZY-’ (1,3,2,-1) (nproma, ngpblks,nlev,-1)

Table 2: Examples for the definition of the ArrayDef structure components dim order, xyzn dim, dim. The
last column indicates the variable names of the respective dimension lengths in the respective model, i.e., ie
and nproma are the ’X’-dimension lengths, je and ngpblks the ’Y’-dimension lengths, ke and nlev the ’Z’
dimension lengths in the COSMO model and the ECHAM5 model, respectively. “-1” denotes an unused rank.

• The CHARACTER string dim_order indicates the order of the dimensions as string. The first and second
horizontal axes are labelled with ’X’ and ’Y’, respectively. The vertical axis is labelled with ’Z’. Each
additional axis, e.g., number of tracer, number of aerosol modes, etc., is labelled by ’N’. If an axis is not
used the label is ’-’. dim_order is a copy of the axis string defined in the CHANNEL submodel5. Table
2 illustrates the definition of dim_order.

• The INTEGER array xyzn_dim provides the information at which rank which dimension can be found.
The first entry indicates the rank of the ’X’ dimension, the second that of the ’Y’ dimension, the third
the ’Z’ and the fourth the ’N’ dimension. Unused dimensions are labelled with -1. (See Table 2 for
examples.) The information contained in the two arrays xyzn_dim and dim_order are redundant. But the
INTEGERs are used as indices to directly access the required rank of the data arrays, whereas the string
array is easier to handle when the order of all dimensions needs to be tested. Therefore both arrays are
stored in the ArrayDef structure.

• Finally, the INTEGER array dim provides the length of the respective dimensions. The first element of dim
gives the lebgth of the first dimension of an array, the second entry the length of the second dimension
etc. An example is shown in Table 2. The structure components of ArrayDef discussed so far describe
the properties on the current PE and thus are independent of the remote PE.

• The last two structure components (ArrLen and ArrIdx) are dimensioned with the number of exchanged
elements NrEle. Hence, they depend on the remote PE.

– ArrLen is the length of the respective array, i.e. the product of all array dimensions, where the
product of the horizontal dimensions is given by NrEle.

– ArrIdx gives the index within the buffer exchanged with each remote PE, where the respective array
starts.

The buffer exchanged between one server and one client PE is simply a 1-dimensional array containing
all exchange fields aligned one after the other. Therefore, ArrIdx is used to find the starting point of
the respective field within this 1-dimensional array. ArrLen contains the information how many elements
starting by ArrIdx belong to the respective field described by Ar.

In addition to the definitions, mmd_utilities comprises also one utility routine and one function.

SUBROUTINE sort 2d i (array,sort ind)
name type intent description
mandatory arguments:
array INTEGER, DIMENSION(:,:) INOUT INTEGER array to sort
sort ind INTEGER IN first rank index of array. The sorting

takes place along the second rank only.

The subroutine sort_2d_i gets a 2-dimensional array and an index for the first rank as input. Using this
index, it sorts the 2-dimensional array along its second rank from small to large values. This subroutine is used
to reorder the index_list acoording to the server PE numbers and afterwards, for each server PE according

5The CHANNEL submodel is described in detail in Jöckel et al., 2010

14 A. Kerkweg and P. Jöckel: MMD Library Manual

to the client numbers (see Subsect. 3.1.5).

Real(kind=DP) FUNCTION get Wtime ()

The function get_wtime reads the system clock. It is used to measure the time of the data exchange processes.

3.1.2 mmd handle communicator.f90

The Fortran95 file mmd_handle_communicator.f90 provides those routines required to assign each process with
the communicators and MPI-rank information. These are

• the group communicator addressing all tasks of one model,

• the communicators addressing the remote model enabling the data exchange between the client-server
model pairs.

The following subroutines are provided:

• MMD_get_model_communicator is a twofold overloaded subroutine. The subroutines
MMD_cag_model_communicator and MMD_get_model_communicator are called by this name.

SUBROUTINE MMD get model communicator (comm [, MMD status])
name type intent description
mandatory arguments:
comm INTEGER OUT MPI-communicator of the calling model
optional arguments:
MMD status INTEGER OUT status flag: the presence of the

status flag determines which of
the two overloaded routines is ad-
dressed. If MMD status is present
MMD cag model communicator is used.

– MMD cag model communicator:

This subroutine performs the MPI setup on which the entire model cascade is based. It is called
directly from the basemodel very early in the model initialisation phase when the MPI environment
is set up:

∗ First of all the rank of the current process entity (PE) in the MPI world communicator
(m_world_rank) and the “world wide” number of tasks (PEs) within this MPI environment
(m_world_npes) are acquired from MPI.

∗ Secondly, the tasks are associated to the individual models. The model with rank 0 reads the
MMD namelist (call of subroutine read_coupling_layout, see below, and the introduction).
Based on the namelist settings the MPI layout ist calculated:

· Following the order of models in the coupling setup, each model gets the number of required
tasks, i.e., the model with coupling Id=1 is attributed to the tasks with world_rank 0 up
to the number of requested PEs-1. For the example given below (and in the introduction),
ECHAM5 would be associated with the tasks of rank 0 to $NPE[1], the COSMO model with
Id=2 is associated to the tasks with rank $NPE[1] to $NPE[1]+$NPE[2]-1, and so forth.

· Based on the layout of the MMD models, i.e., the number of coupled models and the number
of tasks of each model, the lowest rank (in the world communicator) for each model (the
start_PE) is calculated.

· The number of coupled models (m_NrOfCpl) and the start PEs are broadcasted to all PEs.

A. Kerkweg and P. Jöckel: MMD Library Manual 15

· start_PE is then used by each PE to determine the model ID within the overall coupling
setup (m_my_CPL_Id).

· The relative rank of each task (m_my_CPL_rank) within one group of tasks defined by one
model is determind by the difference of the world rank of the PE (m_world_rank) and the
start_PE of the respective model.

· The two parameters (m_my_CPL_rank and m_my_CPL_Id) are used to split the
MPI_comm_world communicator (by calling the MPI routine MPI_Comm_split), yielding in
the group communicator for the respective model (m_model_comm).

· With the group communicator the rank (m_model_rank) of the current PE in the respective
group (=model) is determined and

· the number of processes combined in the group (m_model_npes) is inquired.
Figure 4 illustrates the definition of the above mentioned variables. Note: If not denoted oth-
erwise, “PE number” always refers to the rank of the current PE in the model specific group
communicator.

∗ After setting up the basic communicators the contents of the namelist, i.e., the name, the Id and
the ParentId, are broadcasted to all PEs. The meaning of these variables is explained in the
example below.

∗ Based on this information the individual communicators for the direct communication between
server and client (m_to_client_comm) and vice versa (m_to_server_comm) are determined. As
a server can feed a number of clients, m_to_client_comm is a 1-dimensional array with the
dimension MMD_MAX_MODELL.

∗ For clients, the server type (m_ServerType) is set depending on the server model name.
m_ServerType is an INTEGER and is set to MMD_ServerIsECHAM, if the server name is ’echam’
and to MMD_ServerIsCOSMO, if it is ’cosmo’. For future applications of the MMD library other
PARAMETERs defining a server type can be added.

∗ The server additionally needs a list of the IDs of its clients. This information is stored in the
1-dimensional array MMD_Server_for_Client, which is allocated by the number of clients a
specific server has to deal with.

– MMD get model communicator:
This subroutine provides the model communicator m_model_comm to the basemodel calling this sub-
routine.

• MMD Print Error Message:

SUBROUTINE MMD Print Error Message (iu, MMD status)
name type intent description
mandatory arguments:
iu INTEGER IN unit for output
MMD status INTEGER IN status flag

This is a utility subroutine printing individual error messages for predefined error stati.

• MMD FreeMem Communicator:

SUBROUTINE MMD FreeMem Communicator ()

At the very end of the model integration allocated memory needs to be released. This subroutine deallo-
cates the memory allocated for MMD_Server_for_Client.

• PRIVATE read coupling layout:

SUBROUTINE read coupling layout (MMD status)
name type intent description
mandatory arguments:
MMD status INTEGER INOUT error/status flag

16 A. Kerkweg and P. Jöckel: MMD Library Manual

m_model_comm

0

7

43

6

9 10 11

8

5

21
0 1 2

0

3 4

1 2

5

210

I

II

III

Figure 4: Illustration of the variables defined in mmd handle communicator: The small circles symbolise the
individual tasks. The red circle encloses all tasks visualising the global MPI-communicator (MPI comm world).
The overall number of tasks m world npes is 12 in this example. The rank of each individual task in the global
communicator (m world rank) is indicated by the red numbers in the small circles. In this example the number
of coupled models (m NrOfCpl) is 3. Each of the larger bluish ellipses indicates one model group communicator
(m model comm). For easier reference the models are indicated by roman numbers at the left hand side of the
ellipses. The tasks are coloured identical to the ellipses. m model npes is 3 for the models I and III, whereas it
is 6 for model number II. The number at the lower right of the small circles denotes the rank of the tasks in the
model group communicators (m model rank). The start PEs for the three models are the tasks with the MPI
world rank 0, 3 and 9, respectively. m my CPL Id is 1 for the tasks 0-2 (rank in the world communicator, red
numbers) as they belong to model I. For model II m my CPL Id is 2 and for modell III it is 3.

The subroutine read_coupling_layout is called from the MMD subroutine
MMD_cag_model_communicator as the coupling layout must be known for the communicator setup.
The layout is determined by the user within the MMD library namelist file MMD_layout.nml. The
required information is:

– the number of tasks associated to each individual model,

– the type of the model (currently ’echam’ for ECHAM5/MESSy or ’cosmo’ for COSMO/MESSy) and

– the server ID of each model.

The corresponding namelist for the example illustrated in Fig. 5 with the global chemistry climate model
ECHAM5/MESSy as master server und the regional COSMO/MESSy model as clients is given by:

A. Kerkweg and P. Jöckel: MMD Library Manual 17

 COSMO/MESSy 1 COSMO/MESSy 2 COSMO/MESSy 3 COSMO/MESSy X . . .

 COSMO/MESSy 1.1 COSMO/MESSy 3.1

 COSMO/MESSy 3.2.1

ECHAM5/MESSy

 COSMO/MESSy 3.2

Figure 5: Example for a possible MMD model layout.

&CPL
m_couplers(1)=’echam’, -1, $NPE[1]
m_couplers(2)=’cosmo’, 1, $NPE[2]
m_couplers(3)=’cosmo’, 1, $NPE[3]
m_couplers(4)=’cosmo’, 1, $NPE[4]
m_couplers(5)=’cosmo’, 1, $NPE[5]
m_couplers(6)=’cosmo’, 2, $NPE[6]
m_couplers(7)=’cosmo’, 4, $NPE[7]
m_couplers(8)=’cosmo’, 4, $NPE[8]
m_couplers(9)=’cosmo’, 8, $NPE[9]
/

Each line defines one model within the MMD setup. m_couplers is the variable name of the structure
containing the setup information within MMD. The index is the model instance, i.e., the MMD internal
number or its Id. It must be unique for each model. The first column gives the name of the basemodel.
The second column contains the ID of the server of the respective model (the so-called ParentId). -1
in the entry for ’echam’ signifies that this model has no server, in other words it is the master server.
The third column determines the number of Process Entities (PEs) required for each model6, these are
usually set by the run-script. In the example in Fig. 5, ECHAM5/MESSy (i.e., ’echam’ in the namelist)
is defined as master server. It is server for the four COSMO/MESSy models with the MMD internal
numbers 2,3,4,5. The MMD internal model number 6 is client of the MMD internal model number 2,
which is “COSMO/MESSy 1” in our example (Fig. 5). The MMD internal models number 7 and 8 are
clients of the model number 4 (“COSMO/MESSy 3” in Fig. 5). Last but not least, the model with the
internal number 9 is client to the model number 8 (“COSMO/MESSy 3.2”).

At the end of this subroutine, after reading the namelist file, the number of coupled models (m_NrOfCpl)
is determined according to the namelist settings.

6In the usual ECHAM5/MESSy setup this is equivalent to NCPUS= NPROCA × NPROCB, whereas for the COSMO model this is
the product of nprocx and nprocy.

18 A. Kerkweg and P. Jöckel: MMD Library Manual

3.1.3 mmd mpi wrapper

The module mmd_mpi_wrapper provides some high level interface routines for data exchange between the client
and the server model and vice versa. Send and Receive for the client and the server model are managed by four
subroutines:

• MMD Send to Server:

SUBROUTINE MMD Send to Server (buf, n, Server rank, tag, ierr)
name type intent description
mandatory arguments:
buf INTEGER, DIMENSION(:) INOUT 1D integer data array to send

INTEGER, DIMENSION(:,:) INOUT 2D integer data array to send
REAL(dp), DIMENSION(:) INOUT 1D real data array to send
REAL(dp), DIMENSION(:,:) INOUT 2D real data array to send
REAL(dp), DIMENSION(:,:,:) INOUT 3D real data array to send

n INTEGER IN length of buffer
Server rank INTEGER IN rank of receiving server PE in the server

group MPI-communicator
tag INTEGER IN tag for data transfer to unambiguously

identify this data package
ierr INTEGER OUT error flag

This subroutine is called by the client model and sends a data array from the client to the server.

• MMD Recv from Client:

SUBROUTINE MMD Recv from Client (Client Id, buf, n, Client rank , tag, ierr)
name type intent description
mandatory arguments:
Client Id INTEGER IN ID of sending client model
buf INTEGER, DIMENSION(:) INOUT 1D integer data array to receive

INTEGER, DIMENSION(:,:) INOUT 2D integer data array to receive
REAL(dp), DIMENSION(:) INOUT 1D real data array to receive
REAL(dp), DIMENSION(:,:) INOUT 2D real data array to receive
REAL(dp), DIMENSION(:,:,:) INOUT 3D real data array to receive

n INTEGER IN length of buffer
Client rank INTEGER IN rank of sending client PE in the client

group MPI-communicator
tag INTEGER IN tag for data transfer to unambiguously

identify this data package
ierr INTEGER OUT error flag

This subroutine is called by the server and receives a data array from the client.

A. Kerkweg and P. Jöckel: MMD Library Manual 19

• MMD Recv from Server:

SUBROUTINE MMD Recv from Server (buf, n, Server rank, tag, ierr)
name type intent description
mandatory arguments:
buf INTEGER, DIMENSION(:) INOUT 1D integer data array to receive

INTEGER, DIMENSION(:,:) INOUT 2D integer data array to receive
REAL(dp), DIMENSION(:) INOUT 1D real data array to receive
REAL(dp), DIMENSION(:,:) INOUT 2D real data array to receive
REAL(dp), DIMENSION(:,:,:) INOUT 3D real data array to receive

n INTEGER IN length of buffer
Server rank INTEGER IN rank of sending server PE in the MPI group

communicator for the server
tag INTEGER IN tag for data transfer to unambiguously

identify this data package
ierr INTEGER OUT error flag

This subroutine is called by the client and receives a data array from the server.

• MMD Send to Client:

SUBROUTINE MMD Send to Client (Client Id, buf, n, Client rank , tag, ierr)
name type intent description
mandatory arguments:
Client Id INTEGER IN ID of client model (Receiver of the data)
buf INTEGER, DIMENSION(:) INOUT 1D integer data array to send

INTEGER, DIMENSION(:,:) INOUT 2D integer data array to send
REAL(dp), DIMENSION(:) INOUT 1D real data array to send
REAL(dp), DIMENSION(:,:) INOUT 2D real data array to send
REAL(dp), DIMENSION(:,:,:) INOUT 3D real data array to send

n INTEGER IN length of buffer
Client rank INTEGER IN rank of receiving client PE in the MPI

group communicater for the client model
(Mostly rank = 0 is chosen.)

tag INTEGER IN tag for data transfer to unambiguously
identify this data package

ierr INTEGER OUT error flag

This subroutine is called by the server and sends a data array from the server to the client.

With these routines the user does not have to care about the internal MPI setup and the communicators.
Moreover, the routines are overloaded for different data types: 1D-integer arrays, 2D-integer arrays and 1D-,
2D- and 3D-real arrays.

In addition, two broadcasting subroutines have been implemented:

• MMD_Inter_Bcast:

SUBROUTINE MMD Inter Bcast (buf [, Client id] [, ierr])
name type intent description
mandatory arguments:
buf INTEGER, DIMENSION(:) INOUT buffer to exchange
optional arguments:
Client Id INTEGER IN ID of (remote) client (used by server only).
ierr INTEGER OUT error flag

20 A. Kerkweg and P. Jöckel: MMD Library Manual

The second subroutine is called MMD_Inter_Bcast and it provides the possibility to exchange 1-dimensional
INTEGER arrays between remote models. The broadcasting subroutines can be easily overloaded to handle
additional data types, so far there was no need to do so.

• MMD_Bcast:

SUBROUTINE MMD Bcast (buf, root pe [, comm] [, ierr])
name type intent description
mandatory arguments:
buf INTEGER INOUT INTEGER buffer to be broadcasted

CHARACTER(LEN=*) INOUT CHARACTER buffer to be broadcasted
root pe INTEGER IN rank of the PE sending the data in the respective

MPI group communicator
optional arguments:
comm INTEGER IN communicator
ierr INTEGER OUT error flag

First, the subroutine MMD_Bcast can be used to broadcast CHARACTER strings or INTEGER values using
an arbitrary communicator. Thus, it can be used to broadcast data to PEs of the same model (using
the intra-model MPI-communicator, which is the default), to PEs of the remote model (set comm in the
parameter list to the communicator of the remote model (i.e., m_to_client_comm or m_to_server_comm,
respectively), to both models of a client-server Pair (use the inter-communicator) or all models (set comm
to the world communicator).

3.1.4 mmd client.f90

The Multi-Model-Driver (MMD) consists of three parts. The MMD library which is discussed here, and one
MESSy submodel on the client (MMDCLNT) and on the server (MMDSERV) side each. The routines included
in the MMD library module mmd_client contain the client specific part of the MMD library and interact directly
with the MESSy client submodel MMDCLNT. mmd_client includes eight subroutines and two functions:

• MMD_C_GetServerType:

INTEGER FUNCTION MMD C GetServerType ()

The INTEGER function MMD_C_GetServerType provides information about the associated server to the
client submodel. It returns an INTEGER value indicating the type of the server. At the time being this is
one of MMD_ServerIsECHAM or MMD_ServerIsCOSMO.

• MMD_C_Init:

SUBROUTINE MMD C Init ()

At the beginning of the initialisation phase the client side of the MMD library needs to be initialised. The
variable Me of TYPE ClientDef is declared in the mmd_client module. In the subroutine MMD_C_Init
the structure component Me%PEs is dimensioned according to the number of server PEs. All POINTERs,
which are not yet ASSOCIATEd are NULLIF(Y)ied, i.e., Me%Ar, Me%ArrayStart and Me%PEs(:)%locInd.
In addition, the MMD internal variable BufLen, which stores the length of the buffer received from each
server PE is allocated to the number of remote PEs. All structure components Me%PEs(:)%NrEle and the
variable BufLen(:) are initialised with zero.

A. Kerkweg and P. Jöckel: MMD Library Manual 21

• MMD_C_Set_DataArray_Name:

SUBROUTINE MMD C Set DataArray Name (serv channel, serv object, clnt channel,
clnt object, clnt repr, istat)

name type intent description
mandatory arguments:
serv channel CHARACTER(LEN=*) IN name of server channel
serv object CHARACTER(LEN=*) IN name of server channel object
clnt channel CHARACTER(LEN=*) IN name of client channel
clnt object CHARACTER(LEN=*) IN name of client channel object
clnt repr CHARACTER(LEN=*) IN representation of client channel object

as given in the namelist
istat INTEGER OUT error/status flag

The list of exchange fields, which is determined by the client submodel MMDCLNT, needs to be initialised
within the MMD library. So far, MMDCLNT as client submodel reads a namelist containing a list of ex-
change fields. The subroutine MMD_C_Set_DataArray_Name builds a concatenated list of these fields. The
structure component Me%ArrayStart points to the memory of the first exchange field, whereas all data
arrays are stored in the concatenated list Me%Ar. The channel and channel object names of the exchange
fields are stored in the structure components Me%Ar%Arrdef%channel and Me%Ar%Arrdef%object, respec-
tively. Additionally, the server channel and channel object names, the client representation as given in the
MMDCLNT namelist file and an index are broadcasted to the server.

• MMD_C_Set_DataArray_Name_EndList:

SUBROUTINE MMD C Set DataArray Name EndList ()

When all data fields are initialised the end of the list is indicated by calling the subroutine
MMD_Set_DataArray_Name_EndList. In this subroutine the coupling index is set to -1. This value is
interpreted as list end on the server side of the library.

• MMD_C_Get_Indexlist:

SUBROUTINE MMD C Get Indexlist ()

The most important contribution of the server to the data exchange apart from the data itself is the
list attributing the data points of the parallel decomposed server grid to the parallel decomposed client
in-field. The server calculates the index list, which interlinks the data grid point (is,js) on server process
PEs with the client process PEc and the local in-field grid box (ic,jc) (see description to Fig. 3, Table
1 and Sect. 3.1.5). The subroutine MMD_C_Get_Indexlist processes the data made available by the
server model. Each server PE sends the number of elements NrEle, which will be sent during the buffer
exchange to the respective client PE. Accordingly, this information is stored in the structure component
Me%PEs(ip)%NrEle. Subsequently, the index pairs associated to the elements are sent from the server and
stored in Me%PEs(ip)%locInd (ip is the number of the respective server PE).

• MMD_C_Get_Repr:

SUBROUTINE MMD C Get Repr (axis, gdimlen, name, att)

name type intent description
mandatory arguments:
axis CHARACTER(LEN=4) OUT string indicating axes order
gdimlen INTEGER, DIMENSION(4) OUT length of dimensions
name CHARACTER(LEN=STRLEN CHANNEL) OUT representation name
att CHARACTER(LEN=STRLEN ULONG) OUT channel object attribute (e.g. height

axis)

After the internal setup of the MMD library, the memory for the in-fields needs to be initialised within
the client MESSy submodel MMDCLNT and the POINTER to this memory is handed to the MMD library.

22 A. Kerkweg and P. Jöckel: MMD Library Manual

The allocation of the memory within MMDCLNT is described in detail within the “MMD user manual”7.
In order to enable the exchange of fields, which representation is not a priori known, the subroutine
MMD_C_Get_Repr (in mmd_client) and MMD_S_Sent_Repr (in mmd_server) have been added to the MMD
library to exchange the information required to determine the representation on the client side from the
information given by the server. These routines are only called, if the representation in the MMDCLNT
namelist file was set to ’#UNKNOWN’. In this case the server sends the representation name of the respective
server channel object. Additionally,

– the axis string,

– the global dimensions and

– an additional attribute (e.g., emission heights)

are exchanged. These parameters are made available on the client side within the subroutine
MMD_C_Get_Repr and handed to the MMDCLNT submodel via parameter list.

• MMD_C_GetNextArray:

LOGICAL FUNCTION MMD C GetNextArray (MyChannel, myName)

name type intent description
mandatory arguments:
MyChannel CHARACTER(LEN=*) OUT name of channel
myName CHARACTER(LEN=*) OUT name of channel object

After the allocation of the memory required by the client submodel, the respective POINTERs can be made
available to the MMD library. For this the client steps along the concatenated list provided by MMD with
the help of the MMD function MMD_C_GetNextArray. This function provides the required channel and
channel object name to the client submodel MMDCLNT. With each call, this function internally steps
one entry forward within the concatenated list.

• MMD_C_Set_DataArray:

SUBROUTINE MMD C Set DataArray (status, DIMLEN, ArrayOrder, p4)

name type intent description
mandatory arguments:
status INTEGER OUT status flag
DimLen INTEGER,DIMENSION(4) IN length of the 4 dimensions
ArrayOrder CHARACTER(LEN=4) IN axis string indicating order of axes
p4 REAL(DP), DIMENSION(:,:,:,:) POINTER POINTER for 4D data arrays

For each of the fields the subroutine MMD_C_Set_DataArray is called, which associates the respective
POINTER of the array and stores

– the dimension lengths (Ar%ArrDef%dim),

– the order of dimensions (Ar%ArrDef%dim_order) and

– calculates the axis indices Ar%ArrDef%xyzn_dim.

Additionally,

– the array length (Me%Ar%Arrdef%ArrLen(ip)),

– the array index (Me%Ar%Arrdef%ArrIdx(ip)) and

– the buffer length (BufLen(ip))

are calculated from the above information. Subsect. 3.3 illustrates the meaning of these variables.
7The MMD user manual is available in the same electronic supplement as this manual.

A. Kerkweg and P. Jöckel: MMD Library Manual 23

• MMD_C_SetInd_and_AllocMem:

SUBROUTINE MMD C SetInd and AllocMem ()

When the definition of all data fields within the Fortran95 interface of the MMD library is complete, a
subroutine must be called to initialise the total length of the buffers within the C-core of the library.
The total buffer length corresponds to the memory that must be allocate for the buffer exchange (see
Sect. 3.2.5). The C function is called by the subroutine MMD_C_SetInd_and_AllocMem. At this point, all
preparations are complete and the data exchange can be performed.

• MMD_C_GetBuffer:

SUBROUTINE MMD C GetBuffer (WaitTime)

name type intent description
optional arguments:
WaitTime REAL(dp) OUT time waiting until buffer is available

To actually exchange the data during the integration phase, the server writes the required data into
the memory buffers made available by MPI_alloc_mem, which are subsequently read by the client. The
subroutine MMD_C_GetBuffer calls for each server PE its C counterpart MMDc_C_GetBuffer to read the
respective buffer (see Fig. 2). The C function hands back a 1-dimensional array. This is transferred back
into its full 4-dimensional structure within the Fortran95 part of the library. For this back transformation
the indices for the different dimensions and the dim_order label are used (see Sect. 3.3). MMD_C_GetBuffer
contains a generic routine for the back transition of the 1-dimensional arrays to all dimension orders. In
addition, more computationally efficient implementations for the most often used representations are
provided as special cases, e.g. the standard axis orders ’XY--’ and ’XYZ-’. By transforming the fields
sent by each server PE into their usual 4D structure the in-fields of the client submodel are filled and can
be processed by the client submodel afterwards. During the integration, this subroutine can be called as
often as required.

• MMD_C_FreeMem:

SUBROUTINE MMD C FreeMem ()

After the integration, the memory allocated during the initialisation phase is deallocated. This is done
within the subroutine MMD_C_FreeMem.

3.1.5 mmd server.f90

The module mmd_server contains the server specific Fortran95 part of the MMD library. In contrast to the
client side, the server can provide data to more than one client model. Therefore, many of the structures used
on the client side must have an array dimension on the server side. In the following, two indices to identify a
client model are distinguished:

• The variable ClientId always indicates the index of the client model in the entire MMD setup. This
is dimensioned by the PARAMETER MMD_MAX_MODEL which is set to 64 at the moment. The association
of the ClientId depends on the entries in the MMD namelist file MMD_layout.nml. In mmd_server this
index is used to address the correct client communicator (m_to_client_comm) and the index is parameter
in almost all calls of the subroutines of the C part of the MMD library, because the C part of the library
uses exclusively this index (see Sect. 3.2).

• After the initial setup of MMD the number of client models for each individual server is known. Thus, the
data definition structure (and other variables the server has to provide for each client model separately)
are dimensioned by the number of clients of the respective server. Id is the index used to address the
client specific data structure on the specific server.

24 A. Kerkweg and P. Jöckel: MMD Library Manual

Hereafter, the subroutines provided by the module mmd_server are listed. All routines, except
MMD_S_Allocate_Client and MMD_S_FreeMem are called separately for each client model. Thus one of the
two indices introduced above (ClientId or Id) is always parameter of the subroutine calls to identify the
current client model.

• MMD_S_Allocate_Client:

SUBROUTINE MMD S Allocate Client (NumClients)

name type intent description
mandatory arguments:
NumClients INTEGER IN number of client models

At the very beginning, in the subroutine MMD_S_Allocate_Client a POINTER of TYPE ClientDef (named
Clients) is allocated according to the number of clients of the specific server.

• MMD_S_Init:

SUBROUTINE MMD S Init (ClientId, Id)

name type intent description
mandatory arguments:
ClientId INTEGER IN index of client model within the overall MMD

model setup: this subroutine is called sepa-
rately for each client of the server.

Id INTEGER IN index of client model in the client list of this
specific server

First, the server needs to be initialised for each client model. The subroutine MMD_S_Init inquires
the number of processes occupied by the respective client (Clients(Id)%inter_npes) and allocates
Clients(Id)%PEs accordingly. Clients(Id)%PEs(ip)%NrEle is initialised with 0 (ip is the index of
the remote PE) and Clients(Id)%PEs(ip)%locInd is NULLIF(Y)ied.

• MMD_S_Set_Indexlist:

SUBROUTINE MMD S Set Indexlist (Id, index list)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of this

specific server
index list INTEGER, DIMENSION(:,:) INOUT index list (used for the horizontal element as-

sociation) as calculated from the server sub-
model

The most tricky part of the MMD library is the association of grid points from the parallel decomposed
server field with the grid points on the parallel decomposed client in-fields. For that, the server submodel
MMDSERV receives the geographical longitude and the geographical latitude fields of the parallel de-
composed client “in”-grid8, each as three dimensional fields: The first two ranks spread the horizontal
distribution of the geographical longitude or latitude fields, respectively, as defined on one PE, the third
rank is the respective PE number in the model specific MPI-group-communicator, i.e., the blue numbers
at the lower right side of the PEs in Fig. 4. These fields contain for each index triple (ic,jc, PEc) the
geographical coordinates. Based on the geographical coordinates, the server submodel identifies for each
of the client grid points the respective grid point in the local server model domain, thus adding to the
list the server process number PEs (of the model specific MPI-communicator) on which the respective
geographical point is located and the respective index pair (is,js) in the local domain. Thus a list of n
sextuples (is,js,ic,jc,PEc, PEs)n containing the index pairs in both decomposed fields and the client and
the server PE number is created, with n being the overall number of exchanged horizontal elements.

8As the server and the client “in”-grid can be a rotated grid, the geographical longitudes and latitude fields are 2D fields each.

A. Kerkweg and P. Jöckel: MMD Library Manual 25

This list is further analysed within the MMD library routine MMD_S_Set_Indexlist to yield all the
information required for a most efficient data exchange. At the beginning, the task of m_model_rank=0
sorts the index list by the server PE numbers and calculates the number of grid points each server PE
has to sent (Clients(Id)%NrPoints). This number is sent to the respective server PE. Additionally, the
part of the index list of the respective server PE is sent to it. Each server PE deduces from its part
of the index list the number of horizontal elements Clients(Id)%PEs(ip)%NrEle it has to send to each
individual client PE. After that, the index pairs of the local server grid associated with the horizontal
elements are saved in the locInd structure Clients(Id)%PEs(ip)%locInd and the index pairs of the local
client grid are saved in an intermediate variable. In the following the number of horizontal elements and
the intermediate variables are exchanged with the respective client PEs.

Note: As the buffer exchange is based on the index list as explained above, the buffer exchange can only
be used for fields which contain both horizontal dimensions. If other fields should be exchanged during a
simulation, this has to be performed via the subroutines provided by the module mmd_mpi_wrapper (Sect.
3.1.3).

• MMD_S_Get_DataArray_Name:

SUBROUTINE MMD S Get DataArray Name (Id)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of this

specific server

For the coupling of the data fields, the channel and channel object names of the exchange fields and
the representation name as provided by the client model must be received by the server from each
client. Within the subroutine MMD_S_Get_DataArray_Name the channel and channel object names and
the representation name are acquired from the client model by MMD_Bcasts. First the couple_index
is received. A value of -1 indicates the end of the transmission of the list and the subroutine is
exited. Based on the received data the concatenated list (part of the ClientDef structure) defin-
ing the individual data fields is established. The memory location of the first array is stored
in the variable Clients(Id)%ArrayStart. The server channel and channel object name and the
client representation name are stored in the structure components Clients(Id)%Ar%ArrDef%channel,
Clients(Id)%Ar%ArrDef%object and Clients(Id)%Ar%ArrDef%repr, respectively, making these strings
available for later use on the server side of the MMD library.

• MMD_S_GetNextArray:

LOGICAL FUNCTION MMD S GetNextArray (Id, MyChannel, myName, repr)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of this

specific server
MyChannel CHARACTER(LEN=*) OUT server channel name of data field
myName CHARACTER(LEN=*) OUT server channel object name of data field
repr CHARACTER(LEN=*) OUT representation of data field (as given by the

client model)

So far, the channel and channel object names are only known within the MMD library. For the acquisition
of the server fields, they must be made available for the server submodel MMDSERV. With each call to
the function MMD_S_GetNextArray the next element of the concatenated list is addressed and the channel
and channel object name and the representation name as provided by the client model are forwarded to
the server submodel. The server submodel obtains the requested data POINTER based on the channel and
channel object name.

26 A. Kerkweg and P. Jöckel: MMD Library Manual

• MMD_S_Send_Repr:

SUBROUTINE MMD S Send Repr (axis, gdimlen, name, att, ClientId)

name type intent description
mandatory arguments:
axis CHARACTER(LEN=4) INOUT axis string of representation
gdimlen INTEGER, DIMENSION(4) INOUT global dimensions of representa-

tion
name CHARACTER(LEN=STRLEN CHANNEL) INOUT name of representation
att CHARACTER(LEN=STRLEN ULONG) INOUT attribute of data object
ClientId INTEGER IN index of client in the MMD

model setup

If the representation name sent by the client is "#UNKOWN", the client requests further information about
the representation of the respective channel object from the server (see description of the subroutine
MMD_C_Get_Repr in Sect. 3.1.4). The MMD library routine MMD_S_Send_Repr sends the

– axis string,

– the global dimensions,

– the name of the representation and

– an additional attribute

to the client.

• MMD_S_Set_DataArray:

SUBROUTINE MMD S Set DataArray (Id, status, DIMLEN, ArrayOrder, p4)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of this

specific server
status INTEGER OUT error/status flag
DimLen INTEGER, DIMENSION(4) IN dimension length of input array
ArrayOrder CHARACTER(LEN=4) IN axis string for input array
p4 REAL(DP), DIMENSION(:,:,:,:) POINTER 4D POINTER to the memory of the exchange

field

Finally, the POINTER to the memory of the server exchange fields are passed to the MMD library by the
subroutine MMD_S_Set_DataArray and saved in the structure component Clients(Id)%Ar%Arrdef%p4.
Additionally,

– the dimensions (Clients(Id)%Ar%Arrdef%dim),

– the dimension order (Clients(Id)%Ar%Arrdef%dim_order) and

– the index of the ’X’, ’Y’, ’Z’ and ’N’ axes (Clients(Id)%Ar%ArrDef%xyzn_dim)

are stored within the Clients structure. Making use of this information, the individual array length
(Clients(Id)%Ar%Arrdef%ArrLen(ip)) and the length of the buffer sent by each server PE to each client
PE are calculated (BufLen(ip)).

• MMD_S_SetInd_and_AllocMem:

SUBROUTINE MMD S SetInd and AllocMem (Id)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of this

specific server

A. Kerkweg and P. Jöckel: MMD Library Manual 27

After all POINTERs and dimension information are stored, the full buffer size is determined within the C
part of the library as sum over all buffer lengths (SUM(BufLen)) sent to each individual client PE. This
is triggered by the call of the subroutine MMDc_S_SetInd_and_Mem. As the full size of the buffer is only
required in the C part of the library the Fortran95 subroutine MMD_S_SetInd_and_AllocMem simply calls
the C function MMDc_S_SetInd_and_Mem. After processing this subroutine the initialisation is finished.

• MMD_S_FillBuffer:

SUBROUTINE MMD S FillBuffer (Id [, WaitTime])

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of this

specific server
optional arguments:
WaitTime REAL(dp) OUT idle time in seconds waiting for buffer release

Within the time loop the subroutine MMD_S_FillBuffer fills the buffer. The C function actually filling
the buffer requires a 1-dimensional array as input. Thus the 4-dimensional data needs to be re-ordered.
As the dimension order of the server arrays is not a priori known on the client side, the packing algorithm
in MMD_S_FillBuffer packs the arrays invariably in the same order:

– The loop over the elements in the xy-plane (NrEle) is the slowest,

– next is the loop over the ’Z’ dimension and

– fastest varying is the ’N’ dimension.

The MMD_S_FillBuffer contains an algorithm packing an array of arbitrary order of dimensions in grid
point representation9. For higher computing efficiency, the commonly used dimension orders are im-
plemented as special cases (e.g. ’XY--’, ’XZY-’ or ’XYZN’). If required, other special cases can be in-
cluded in this subroutine as well. For each 1-dimensional (i.e. packed) array per remote PE the C routine
MMDc_S_FillBuffer is called, copying the array to the memory space allocated by MPI_Alloc_mem. When
all buffers attributed to all client PEs are filled, the C function MMDc_S_BufferFull is called, which sets
a barrier to prevent the buffer to be filled a second time before the data was read by the client.

• MMD_S_FreeMem:

SUBROUTINE MMD S FreeMem (NumClients)

name type intent description
mandatory arguments:
NumClients INTEGER IN number of client models of this specific server

At the end of the simulation the allocated memory is deallocated within the subroutine MMD_S_FreeMem.

3.1.6 mmd test.f90

The most tricky parts of the data exchange are to match the packing algorithms of the server and the client and
the creation of the index_list, in which the index pair of each horizontal element of the client in-field on each
client PE is associated with the index pair of the associated horizontal element in the local server domain and
the respective PE number (in the server specific group communicator). Whether the exchange of a horizontal
field is performed properly can be tested, by creating an artificial additional exchange field. The additional field
on the server side is a three dimensional field spanned by a the usual horizontal plane and a number axis of
length 8 (N=8). The ’Z’ dimension is allocated with 1. The following values are assigned to the variable: The
horizontal fields for N=1 and N=2 contain the geographical longitude and latitude, respectively. The third to
eighth entry are identical to the index_list. Table 3 lists all entries.

9It is presumed that the array is defined in the horizontal space as the buffer exchange only works in this case.

28 A. Kerkweg and P. Jöckel: MMD Library Manual

Table 3: Meaning of the eight number dimensions of the test array.

N field
1 Geographical longitude as defined for the server grid
2 Geographical latitude as defined for the server grid
3 First index in parallel decomposed server grid (is)
4 Second index in parallel decomposed server grid (js)
5 First index in parallel decomposed client grid (ic)
6 Second index in parallel decomposed client grid (jc)
7 Number of respective client process (PEc)
8 Number of respective server process (PEs)

During the exchange procedure each horizonal grid point (and the associated eight entries) is assigned to a grid
point of the in-field of the client. Thus the longitude and the latitude of each grid point known to the client
for the in-fields can directly be compared with the longitude and the latitude in the exchanged server field, i.e.,
the first and second entry of the exchanged field. If these are not equal, the exchange procedure went wrong.
Additionally, the index pair of the in-field can be compared to the client index pair contained in the exchanged
field. They also have to be identical. This test does not sufficiently prove the correctness of the exchange
procedure, but it checks the two most error-prone parts of the data exchange.

To perform this test, the following subroutines are provided by the module mmd_test. mmd_test is used by the
server and client submodels.

• MMD_testC_Setup/MMD_testS_Setup:

SUBROUTINE MMD testC Setup (nx, ny)

name type intent description
mandatory arguments:
nx INTEGER IN number of grid points in first horizontal

dimension
ny INTEGER IN number of grid points in second hori-

zontal dimension

SUBROUTINE MMD testS Setup (Id, nx, ny, cdim order)
name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of

this specific server
nx INTEGER IN number of grid points in first horizontal

dimension
ny INTEGER IN number of grid points in second hori-

zontal dimension
cdim order CHARACTER(LEN=4) IN axis string to be used for the test array

As a first step in both models the test_array is allocated. This is easy for the client model (subroutine
MMD_testC_Setup) as the test_array is simply allocated according to the local horizontal dimensions (as
provided by the client submodel) and the required additional “numerical” dimensions of the array on each
client PE. The setup of the server (in MMD_testS_Setup) is more demanding. First, the local dimensions
are not necessarily equal on all server PEs. Therefore the maximum local horizontal dimension length of
all server PEs needs to be determined. Second, as the order of the coordinate axes can be different in
different models, different axes orders (e.g., ’XZNY’ or ’XYNZ’)10 have to be distinguished. Thus, more
than one test_array is required during the initialisation phase of the server:

10Note: at the moment only ECHAM and COSMO are implemented as server models. For the coupling of other models other
axis order strings can be taken into account in future.

A. Kerkweg and P. Jöckel: MMD Library Manual 29

– First, a global_array allocated only on the PE with m_model_rank=0 is used during the initial
phase as the filling of the test_array only works for a global field (see subroutine MMD_testS_Fill).

– Second, the global field is scattered to the individual tasks. Thus a local test_array dimensioned
by the maximum horizontal dimensions is required during the initial phase.

– Finally the exchanged field, which is a local test_array dimensioned by the respective local dimen-
sions, is filled by the intermediate local test_array dimensioned by the maximum (of all server PEs)
horizontal dimensions.

• MMD_testS_GetTestPtr/MMD_testC_GetTestPtr:

SUBROUTINE MMD testS GetTestPtr (Id, p, axis, ldim)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of

this specific server
p REAL(dp),DIMENSION(:,:,:,:) POINTER Return POINTER of test_array.
axis CHARACTER(LEN=4) OUT axis string of test array
ldim INTEGER, DIMENSION(4) OUT local dimensions of test array

SUBROUTINE MMD testC GetTestPtr (p, axis, ldim)
name type intent description
mandatory arguments:
p REAL(dp),DIMENSION(:,:,:,:) POINTER return POINTER of test_array
axis CHARACTER(LEN=4) OUT axis string of test array.
ldim INTEGER, DIMENSION(4) OUT local dimensions of test array

Because the test_arrays are handled as normal exchange fields, the POINTER to the test_arrays and
the dimension information about test_arrays must be provided to the client and the server submodel
using the subroutines MMD_testS_GetTestPtr and MMD_testC_GetTestPtr, respectively.

• MMD_testS_Fill:

SUBROUTINE MMD testS Fill (Id, index list, lon, lat)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of

this specific server
index list INTEGER, DIMENSION(6) IN sextuple describing the connection be-

tween one grid point on one server PE
with one grid point of a client PE;
This list contains: index pair on server
PE, index pair on client PE, number of
client PE, number of server PE.

lon REAL(dp) IN longitude of the grid point described by
index_list

lat REAL(dp) IN latitude of the grid point described by
index_list

So far server and client required similar preparations. The rest of the initialisation phase is purely work
on the server side as the test_array needs to be filled with the index_list information. The subroutine
MMD_testS_Fill fills the global_array. It is called separately for each sextuple in the index_list. As
described above, the index_list sextuple is copied to the third to eighth entry of the global_array,
whereas the longitude and the latitude of the global grid are assigned to the first two entries (see Table
3).

30 A. Kerkweg and P. Jöckel: MMD Library Manual

• MMD_testS_FinishFill:

SUBROUTINE MMD testS FinishFill (Id)

name type intent description
mandatory arguments:
Id INTEGER IN index of client model in the client list of

this specific server

At the end of the filling procedure within the subroutine MMD_testS_FinishFill the global_array is
scattered to the local fields on each PE and afterwards copied to the test_array, which is allocated to
the exact size of the local fields. The global and the first local test array are deallocated afterwards. Now
the test field is ready for the data exchange. The field is automatically exchanged together with the other
fields.

• MMD_testC_Compare:

SUBROUTINE MMD testC Compare (lon, lat, istat [, PrintUnit])

name type intent description
mandatory arguments:
lon REAL(dp),DIMENSION(:,:) IN original in-field longitude
lat REAL(dp),DIMENSION(:,:) IN original in-field latitude
istat INTEGER OUT error/status flag
optional arguments:
PrintUnit INTEGER IN unit for diagnostic output

After the client PEs received all buffers from all server PEs, the test routine MMD_testC_Compare is called.
Here the geographical coordinates and the indices are compared as explained above. If an error occurs the
subroutine writes some error output to facilitate the error search and afterwards an error flag is returned
triggering a termination of the model simulation.

• MMD_testS_FreeMem:

SUBROUTINE MMD testS FreeMem (ClientId)

name type intent description
mandatory arguments:
ClientId INTEGER IN index of client in the MMD model setup

SUBROUTINE MMD testC FreeMem ()

At the end of a simulation the memory allocated by mmd_test is deallocated within the subroutines
MMD_testS_FreeMem and MMD_testC_FreeMem.

3.2 The C part of the MMD library

Even if mixing different programming languages within the same library is not desirable, this way was chosen
for MMD. The main library interface which is addressed by the server and client submodels (MMDCLNT and
MMDSERV) should be easily expandable for a scientific user. Even more important: the data fields filled on
the client side are accessed by Fortran95 POINTERs. These POINTERs can point to non-contiguous sub-samples
of higher dimensioned TARGETs. In contrast, C pointers provide access to a field by pointing to the memory
address, where this field starts assume that the field is stored contiguously in the memory. The MMDCLNT
submodel provides Fortran95 POINTERs, which need not to be contiguous in memory (the most prominent
example is a POINTER to one tracer). Therefore, the library part remapping the exchanged data to the fields
needs to be written in Fortran95. Nevertheless, C-code can not completely be omitted within the library as the
MPI function MPI_alloc_mem is indispensable for the library and this function is not usable in Fortran95. As
most of MESSy is written in Fortran95 the C part is kept as short as possible. It only contains those functions
required for the dimensioning and the allocation of the exchange buffers and the data exchange itself.

A. Kerkweg and P. Jöckel: MMD Library Manual 31

3.2.1 cfortran.h

As the MMD library combines Fortran95 and C, the header file cfortran.h is required to enable the data
exchange (e.g. parameter lists) between Fortran95 and C routines.

3.2.2 mmdc util.h

This header file contains the definitions used in the C part of the MMD library. The structure ModelDef
comprises the information required for data exchange between the current and the remote model:

struct ModelDef {
MPI_Aint TotalBufferSize;/* Size of buffer of each PE */
MPI_Comm model_comm; /* Communicator of this model */
MPI_Comm inter_comm; /* Inter model communicator */
MPI_Comm intra_comm; /* Intra model communicator */
int model_rank; /* Rank of this model */
int model_npes; /* Number of PEs of this model */
int inter_npes; /* Number of PEs of remote model */
MPI_Win BufWin; /* MPI RMA windows */
struct BufDef *buf;

};

• TotalBufferSize is the buffer size each PE has to send/receive to/from all remote PEs.

• The communicators: model_comm and inter_comm are the MPI-communicators required for the commu-
nication between the processes of the current model and the communication to the remote model PEs,
respectively. intra_comm is the communicator for simultaneous communication of all PEs of the current
and the remote model.

• The rank of each PE within the group communictor of the current model is model_rank.

• model_npes and inter_npes are the number of PEs used by the current and the remote model, respec-
tively.

• BufWin is of MPI type MPI_Win and is required to control the access to the memory buffer used by the
client and the server model.

• The structure BufDef contains all information specific for one remote model PE:

struct BufDef {
int BufLen; /* Length of buffer */
long BufIndex; /* Index in Send Buffer */
double *SendBuf; /* Pointer of Data in Send buffer */

struct BufDef *next;
};

BufDef is a concatenated list with as many members as the number of remote PEs:

– BufLen gives the length of the buffer exchanged with the respective remote PE,

– BufIndex is the index in the overall received/sent buffer from which on the respective buffer starts.

– SendBuf is the pointer to the sent/received buffer.

– next points to the next list element or is nullified for the last element.

Sect. 3.3 illustrates the meaning of these variables.

32 A. Kerkweg and P. Jöckel: MMD Library Manual

3.2.3 mmdc util.c

double MMDc U Time ()

The file mmdc_util.c consists of one function only. MMDc_U_Time inquires the system clock and hands back a
number of type double representing the current system time.

3.2.4 mmdc server.c

mmd_c_server.c contains five functions:

• MMDc_S_Init:

void MMDc S Init (model comm, inter comm, *npes)

name type intent description
arguments:
ClientId int IN index of client in the MMD model setup
model comm int IN internal model communicator
inter comm int IN model communicator to remote model
npes int OUT number of remote PEs

First, the communicators within the C environment are set up during the initialisation phase by the
function MMDc_S_Init. Additionally, this function provides the number of remote PEs to the Fortran95
part of the library.

• MMDc_S_SetInd_and_Me:

void MMDc S SetInd and Mem (ClientId, *bufsize)

name type intent description
arguments:
ClientId int IN index of client in the MMD model setup
bufsize int, DIMENSION(:) IN length of buffer exchanged with each remote PE

The server side of the MMD library has the important task to calculate the association of the PEs and
grid points of the current and the remote model. The index_list is prepared within the server submodel
MMDSERV. The Fortran95 part of the MMD library calculates the dependencies between the parallel
decomposed server and client grids. From this, the length of the buffer each server PE exchanges with
each client PE is calculated. This is the only information required by the C part of the library.

– The function MMDc_S_SetInd_and_Mem stores this information within the structure component
&Clients[*ClientId-1]->buf->BufLen.

– The total buffer length (&Clients[*ClientId-1]->TotalBufferSize) is calculated by summing up
the individual buffer lengths exchanged with the remote PEs.

– The buffers exchanged with each client PE are aligned to one large one-dimensional buffer. The
information, at which index in this large buffer the array for the individual client PEs starts, is
stored in the structure component &Clients[*ClientId-1]->buf->BufIndex.

– Each of these indices is sent to the respective client PE, to enable the client PE to locate the
corresponding buffer part.

– The total buffer length (&Clients[*ClientId-1]->TotalBufferSize) is used to allocate the ex-
change buffer in the correct size by the MPI function MPI_alloc_mem.

– For the provision of the data, a window is created with MPI_Win_create and its handle is stored in
&Clients[*ClientId-1]->BufWin.

– Afterwards the pointers to the starting addresses of each buffer exchanged with every client PE
(&Clients[*ClientId-1]->buf->SendBuf) is stored for later use.

A. Kerkweg and P. Jöckel: MMD Library Manual 33

• MMDc_S_FillBuffer:

void MMDc S FillBuffer (ClientId, *PeId,*array)

name type intent description
arguments:
ClientId int IN index of client in the MMD model setup
PeId int IN Id of the remote PE the actual buffer is sent to
array double IN data to be copied to the buffer memory space

Within the time loop these pointers are used to fill the buffer. In the function MMDc_S_FillBuffer, the
data provided as parameter array is copied to the correct location of the buffer (i.e., to the memory space,
which is accessible from server and client).

• MMDc_S_BufferFull:

void MMDc S BufferFull (ClientId)

name type intent description
arguments:
ClientId int IN index of client in the MMD model setup

When the buffer is completely filled, i.e., each server PE filled the buffers for all client PEs, a barrier is
set within the function MMDc_S_BufferFull to prevent the server from overwriting the buffer before it is
copied by the client. After the client read the data, the barrier is released by the client and the server can
fill the buffer again.

• MMDc_S_GetWaitTime:

void MMDc S GetWaitTime (ClientId,*WaitTime)

name type intent description
arguments:
ClientId int IN index of client in the MMD model setup
WaitTime double OUT time span the server had to wait

mmdc_server.c comprises the additional function MMDc_S_GetWaitTime. It measures the time span be-
tween the call of the FillBuffer function and the release of the buffer by the client.

3.2.5 mmdc client.c

The work the client has to perform is split into three parts:

1. The initialisation of the MMD library client side.

void MMDc C Init (*model comm, *inter comm, *npes)

name type intent description
arguments:
model comm int IN internal model communicator
inter comm int IN model communicator to client model
npes int OUT number of remote PEs

Function MMDc_C_Init is called from the Fortran95 subroutine MMD_C_Init and initialises the MMD
client C environment, i.e., the C model communicators (model_comm and inter_comm) in agreement with
the Fortran95 communicators. From these two, the intra communicator (intra_comm), the model rank
model_rank and the number of the PEs in the current and the server model (model_npes and inter_npes)
are determined. Based on the number of server PEs, the variable buf of type BufDef is allocated. The
number of server PEs is output parameter of this function, to be used in the Fortran95 part of the library.

34 A. Kerkweg and P. Jöckel: MMD Library Manual

2. The calculation of the matrix relating the memory filled by each server PE to the respective client PE.

void MMDc C SetInd and Mem (*bufsize)
name type intent description
arguments:
bufsize int, DIMENSION(:) IN length of buffer exchange per remote PE

In function MMDc_C_SetInd_and_Mem the information about the length and the location of the buffer
sections accessed by each specific client PE within the exchanged buffers is stored.

• The calling Fortran95 subroutine provides the buffer length, which is required as input and inde-
pendent for each of the server PEs by the current client PE. This length is stored in the structure
component me->buf->BufLen.

• The server PE sends an index, which indicates, where the data for the client PE starts in the 1-
dimensional array of data sent by the server PE. This index is stored in the structure component
me->buf->BufIndex.

• Additionally, the maximum length of all buffer lengths exchanged by the current client PE
(maxbufsize) is determined. This is the required buffer size on the client side, because the client
exchanges data only with one server PE at once.

• Thus, a buffer of respective size is allocate with MPI_alloc_mem.

• For accessing the data provided by the server PE, a window is created with MPI_Win_create and its
handle is stored in me->BufWin.

• Finally, the pointer used to access the data of each server PE is stored in me->buf->SendBuf.

3. The actual buffer exchange:

void MMDc C GetBuffer (*PeId,*array)
name type intent description
arguments:
PeId int IN number of remote PE
array double OUT array of data copied from the common memory space

The function MMDc_C_GetBuffer is the one actually exchanging the buffers, i.e., the data in the buffer is
copied to a 1-dimensional array, which in a second stage in the Fortran95 part of the library, is copied to
the in-fields processed by the client submodel.

• MMDc_C_GetWaitTime:

void MMDc C GetWaitTime (*WaitTime)

name type intent description
arguments:
WaitTime doubl OUT time span the server has to wait

Additionally, the function MMDc_C_GetWaitTime is provided, measuring the time from calling the subrou-
tine MMD_C_GetBuffer until the server sets the barrier indicating that the buffer is full. This is useful for
benchmarking and run-time optimization.

3.3 Example

In this Section the meaning of the index and length variables used in the structures are clarified with the help
of the example shown in Fig. 3 and Table 1.

Figure 6 illustrates the buffer definition on the server side in the C part of the library. Each grey box depicts
one server PE. The first grey box is empty, as the client domain does not overlap with PEs 0. Server PEs 1
contributes one grid point to client PEc 0 and one to PEc 1. This is illustrated by the coloured bars: yellow

A. Kerkweg and P. Jöckel: MMD Library Manual 35

PES 1

PES 0

PES 2

PES 3

PEC 0

PEC 2

PEC 0 PEC 1 PEC 2

&C>buf(0)>BufLen &C>buf(1)>BufLen &C>buf(2)>BufLen

&C>buf(0)>Index &C>buf(2)>Index&C>buf(1)>Index

&C>TotalBufferSize

&C>buf(2)>BufLen

&C>buf(2)>Index

&C>TotalBufferSize

&C>buf(0)>BufLen &C>buf(1)>BufLen

&C>buf(0)>Index &C>buf(1)>Index

&C>TotalBufferSize

PEC 1

PEC 2

Figure 6: Example of a possible MMD exchange buffer layout.

for client PEc 0 and green for PEc 1. Each of this buffer parts is &Clients[*ClientId-1]->buf->BufLen
long. In the figure the first part of the structure &Clients[*ClientId-1] is abreviated by &C. As explained
above buf is a concatenated list. The different elements of this list are depicted by indices in the figure, e.g. ,
&C->buf(1)->BufLen means the length of the buffer that is sent to PEc 1. For the correct access to the data,
it must be known, where the buffers for each of the client PEs starts. This is indicated by the respective indices
&C->buf()->Index. The overall length of the buffer sent by PEs 1 is given by &C->TotalBufferSize.

Server PEs 2 only sends data to client PEc 2. Thus &C->TotalBufferSize for PEs 2 is equal to the length of
the buffer sent to PEc 2 (&C->buf(2)->BufLen). The buffer lengths attributed to the other client PEs are set
to zero.

Server PEs 3 sends data to all three client PEs: one grid point each to client PEc 0 and PEc 1 and two grid

36 A. Kerkweg and P. Jöckel: MMD Library Manual

P
E

S
 1

P
E

S
 0

m
e

>b
uf

(1
)

>I
nd

ex

P
E

c 0
m

e
>b

uf
(1

)
>B

uf
Le

n

m
e

>b
uf

(1
)

>I
nd

ex

m
e

>b
uf

(1
)

>B
uf

Le
n

P
E

c 1

P
E

S
 2

m
e

>b
uf

(2
)

>I
nd

ex

m
e

>b
uf

(2
)

>B
uf

Le
n

P
E

S
 3

m
e

>b
uf

(3
)

>I
nd

ex

m
e

>b
uf

(3
)

>B
uf

Le
n

m
e

>b
uf

(3
)

>I
nd

ex

m
e

>b
uf

(3
)

>B
uf

Le
n

m
e

>b
uf

(3
)

>I
nd

ex

m
e

>b
uf

(3
)

>B
uf

Le
n

P
E

c
 2

N
rE

le
 *

 k
 *

 n

(1
,1

,1
)

(1
,1

,n
)

(1
,2

,1
)

(1
,2

,n
)

(1
,k

,1
)

(1
,k

,n
)

...
...

...
...

...
(2

,1
,1

)
...

...
(2

,k
,n

)
...

...
...

(N
rE

le
,1

,1
)

...
(N

rE
le

,k
,n

)
...

fie
ld

(1
)

fie
ld

(2
)

fie
ld

(3
)

fie
ld

(N
C

P
L)

fie
ld

(N
C

P
L

1)
...

N
E

X
C

H

 fi
el

ds

a) b) c)

M
e%

A
r(

1)
%

A
rr

de
f%

A
rr

Le
n(

1)
M

e%
A

r(
2)

%
A

rr
de

f%
A

rr
Le

n(
1)

M
e%

A
r(

3)
%

A
rr

de
f%

A
rr

Le
n(

1)
M

e%
A

r(
N

C
P

L)
%

A
rr

de
f%

A
rr

Le
n(

1)
M

e%
A

r(
N

C
P

L
1)

%
A

rr
de

f%
A

rr
Le

n(
1)

M
e%

A
r(

1)
%

A
rr

de
f%

A
rr

Id
x(

1)
M

e%
A

r(
2)

%
A

rr
de

f%
A

rr
Id

x(
1)

M
e%

A
r(

3)
%

A
rr

de
f%

A
rr

Id
x(

1)
M

e%
A

r(
N

C
P

L
1)

%
A

rr
de

f%
A

rr
Id

x(
1)

M
e%

A
r(

N
C

P
L)

%
A

rr
de

f%
A

rr
Id

x(
1)

B
uf

Le
n(

1)

Figure 7: Example of a possible MMD exchange buffer layout.

A. Kerkweg and P. Jöckel: MMD Library Manual 37

points to PEc 2. Thus &C->buf(2)->BufLen is twice as large as &C->buf(0)->BufLen or &C->buf(1)->BufLen.

Figure 7a) shows the same for the client side. The figure is constructed like a table. The server PEs build the
columns and the client PEs the rows. The grey boxes indicate again the server PEs. As PEs 0 does not send
any data, all variables are zero on all client PEs. client PEc 0 receives data from PEs 1 and PEs 3. The buffer
sent by PEs 1 is me->buf(1)->BufLen long and starts at position me->buf(1)->BufIndex. Note that the index
1 of buf referes to PEs 1. Correspondingly, the buffer received from PEs 3 starts at me->buf(3)->BufIndex
and its length is me->buf(3)->BufLen. The maxbufsize for PEc 0 is equal to me->buf(1)->BufLen and
me->buf(3)->BufLen, as they are equally long.

The respective variables for client PEc 1 are defined accordingly. client PEc 2 receives data from the two server
processes PEs 2 and PEs 3. The definitions are similar, different is maxbufsize, which is obviously set to
me->buf(3)->BufLen as PEc 2 receives two grid points from PEs 3 but only one from PEs 2.

The C part needs to deal only with the complete buffers exchanged between one server and one client PE.
While this part is illustrated in Fig. 7a), parts 7b) and 7c) of the figure deal with the variable definitions in the
Fortran95 part of the library, where the single exchanged fields (Fig. 7b) and individual horizontal grid elements
of each field (Fig. 7c) are addressed.

Figure 7b) illustrates the order of the single fields within one buffer dealt with by C. Per exchanged buffer
(i.e., per client and per server PE) the fields are stored one after the other in the order of their definition. The
number of fields is always the full number of exchange fields (NEXCH). The length of the individual fields can
vary, as the vertical and the number dimension can differ11. The individual length of each field is saved in
the variable Me%Ar(ix)%Arrdef%ArrLen(ip). Where ix is the number of the field. This is again a pseudo-
index used for illustration, as Me%Ar is a concatenated list. The index ip indicates the respective server PE.
Me%Ar(ix)%Arrdef%ArrLen(ip) can be different for each server PE, because the number of elements exchanged
with each server PE (Me%PEs(ip)%NrEle) can be different for each server PE. As the array lengths can vary, the
start index of each of the fields within the exchanged buffer is saved in the variable Me%Ar(ix)%Arrdef%ArrIdx.
BufLen(ip) in mmd_client.f90 is defined as the sum over ix in Me%Ar(ix)%Arrdef%ArrLen(ip). BufLen(ip)
equals me->buf(ip)->BufLen in mmdc_client.c.

Figure 7c) shows the sequence of the single data points of one field as aligned by the packing algorithm. The
fastest varying index is the number dimension (n), the second fastest is the vertical dimension (k). The horizontal
dimension (from 1 to NrEle) varies most slowly.

A Glossary

• attributes: Attributes represent time independent, scalar characteristics, e.g., the measuring unit.

• axis string: It is a CHARACTER of length 4, it is defined for each channel object, indicating which rank is associated to
which dimension. For instance, ’XY–’ indicates a horizontal 2D field in grid point space.

• channel: The generic submodel CHANNEL manages the memory and meta-data and provides a data transfer and export
interface. A channel represents sets of “related” channel objects with additional meta information. The “relation” can be,
for instance, the simple fact that the channel objects are defined by the same submodel.

• channel object: It represents a data field including its meta information and its underlying geometric structure (represen-
tation), e.g., the 3-dimensional vorticity in spectral representation, the ozone mixing ratio in Eulerian representation, the
pressure altitude of trajectories in Lagrangian representation.

• dimensions: They represent the basic geometry of one dimension, e.g., the number of latitude points, the number of
trajectories, etc.

• exchange field: An exchange field is a field requested within the mmdclnt.nml namelist file and provided by the server to the
client. An exchange field can either be a field which is interpolated and copied to a client variable, or a field required for the
interpolation itself.

• in-field: The in-fields are those fields provided by the server or driving model, which are still defined on the server grid, but
on the client side. In other words, in-fields are the exchanged fields before the interpolation.

11Note: the horizontal dimensions must be the same for all fields exchanged between one server and one client PE, i.e.,
Me%PEs(ip)%NrEle.

38 A. Kerkweg and P. Jöckel: MMD Library Manual

• master server: The master server is the coarsest model in a model cascade, i.e., that model that has no server itself. In
the MMD library namelist this model is indicated by a “-1” as associated server. In most cases this is a global model. The
master server determines the timing of the entire model cascade.

• remote model: the “other” model in a communicating client-server pair; i.e., for the client the server, for the server the
respective client

• remote PE: the “other” PE in a pair of client and server PEs exchanging data. For example, server PEs 2 is sending data
to client PEc 4: in this case PEc 4 is the remote PE for server PEs 2 and vice versa.

• representation: It describes multidimensional geometric structures (based on dimensions), e.g., Eulerian (or grid point),
spectral, Lagrangian.

References

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern,
B.: Development Cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717 –
752, 2010.

