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Abstract. Mountain regions are highly sensitive to global cli-
mate change. However, large scale assessments of mountain
environments remain problematic due to the high resolution
required of model grids to capture strong lateral variability.
To alleviate this, tools are required to bridge the scale gap
between gridded climate datasets (climate models and re-
analyses) and mountain topography. We address this problem
with a sub-grid method. It relies on sampling the most impor-
tant aspects of land surface heterogeneity through a lumped
scheme, allowing for the application of numerical land sur-
face models (LSMs) over large areas in mountain regions or
other heterogeneous environments. This is achieved by in-
cluding the effect of mountain topography on these processes
at the sub-grid scale using a multidimensional informed sam-
pling procedure together with a 1-D lumped model that can
be driven by gridded climate datasets. This paper provides a
description of this sub-grid scheme, TopoSUB, and assesses
its performance against a distributed model. We demonstrate
the ability of TopoSUB to approximate results simulated by
a distributed numerical LSM at around 104 less computa-
tions. These significant gains in computing resources allow
for: (1) numerical modelling of processes at fine grid reso-
lutions over large areas; (2) efficient statistical descriptions
of sub-grid behaviour; (3) a “sub-grid aware” aggregation
of simulated variables to coarse grids; and (4) freeing of re-
sources for computationally intensive tasks, e.g., the treat-
ment of uncertainty in the modelling process.

1 Introduction

Mountain regions extend over a large portion of the global
land area and significantly influence climate as well as
human livelihoods (Barnett et al., 2005; Gruber, 2012;
Immerzeel et al., 2010). Complex topography in moun-
tain regions causes high lateral variability of the surface-
atmosphere boundary by: (a) altering the local energy and
mass fluxes between the ground and the atmosphere (caused
by e.g., air temperature, shading, precipitation gradients);
and (b) influencing subsurface properties (e.g., exposed
bedrock in steep slopes, fine sediments and abundant wa-
ter in valleys). Mountain environments are currently under-
going rapid and significant change worldwide due to global
changes in the earth’s climate e.g., warming mountain per-
mafrost (Harris et al., 2003; Isaksen et al., 2001); retreat
of mountain glaciers (Paul et al., 2007; Zemp et al., 2006;
Barry, 2006); and reduction of snow cover in many regions
(Laternser and Schneebeli, 2003; Mote et al., 2005). In order
to understand the impact of these changes, under current and
future climate conditions, tools are required to enable numer-
ical modelling of physical processes that occur across a range
of spatial scales.

Global climate models (GCMs) and regional climate mod-
els (RCMs) are able to generate continuous and physically
consistent fields of climate variables for the observational
period and for scenarios of future climatic conditions. How-
ever, the coarse grids such models operate on (∼ 10–500 km)
limit the ability to resolve the interactions and feedbacks be-
tween the land surface and climate systems in complex to-
pography, which is characterised by strong variability and
nonlinear processes at the sub-grid scale (Giorgi and Avissar,
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Fig. 1.The scale problem TopoSUB addresses –(A) the complex geometry of mountain topography is aggregated to a mean value in coarse
grids which does not necessarily account for sub-grid heterogeneity(B) application of numerical models requires a fine grid in order to
account for the effect of this heterogeneity, which is computationally expensive. TopoSUB allows for application of numerical models over
large areas through a lumped approach that samples the most important aspects of this heterogeneity.

1997). A wealth of surface models exist which are capable of
simulating processes in mountain regions on fine grids (∼ 1–
100 m) and can be driven by coarse grid data with suitable
regionalisation techniques (e.g.Bartelt and Lehning, 2002;
Gruber et al., 2004; Klok and Oerlemans, 2002; Paul and
Kotlarski, 2010), however, the strong fine-scale variability
of mountain systems (cf.Gubler et al., 2011; Riseborough
et al., 2008) precludes the application of high-resolution,
distributed numerical models, over large areas. Therefore,
the problem remains that despite the near-global availabil-
ity of high-resolution digital elevation models, global climate
datasets and suitable numerical simulators, land surface pro-
cesses in complex topography remain poorly quantified in
many aspects (Fig.1).

This problem of scale has been previously approached
through various forms of sub-grid parameterisation. This
term can be defined as capturing the spatial variability of
a modelled process at a suitable resolution, while reducing
the demands for data and computation, by approximating its
fine-scale distribution at a lower resolution (e.g.Hebeler and
Purves, 2008; Giorgi and Avissar, 1997). Previous sub-grid
approaches can be broadly classified as either discrete mo-
saic types or continuous probability density function (PDF)
schemes (Wood et al., 1988; Avissar, 1991; Giorgi and Avis-
sar, 1997). This distinction can also be conceptualised as
the modelling of sub-gridinter-patch andintra-patch hetero-
geneity (Giorgi and Avissar, 1997). In mosaic approaches, a
number of homogeneous subregions (“tiles”) are defined at
the sub-grid scale, each with its own energy, momentum and
water budget. The surface fluxes are computed separately for
each tile. Aggregation to the coarse grid is performed by av-
eraging over the tiles which are weighted by their fractional
cover (Avissar and Pielke, 1989; Koster and Suarez, 1992).
Models differ on how these tiles are discretised. For example,
Seth et al.(1994) andDimri (2009) used a regularly spaced
finescale sub-grid. Alternatively, a series of discrete classes

based on surface vegetation type (Avissar and Pielke, 1989;
Koster and Suarez, 1992) or topographical elevation (Leung
and Ghan, 1995) have been used.Kotlarski (2007) devel-
oped a dynamic mountain glacier sub-grid parameterisation
for inclusion in RCM’s which explicitly accounts for run off
generation and adjusts glacier area (dynamic tile) based on
accumulation/ablation conditions. PDF-based approaches at-
tempt to describe the variability of sub-grid characteristics
through analytical or empirical distribution functions (Avis-
sar, 1991; Famiglietti and Wood, 1994; Liang et al., 2006).
This is based on the assumption that surface characteristics
as well as climatic forcings vary according to distributions
that can be approximated by the given PDF. This approach
then explicitly calculates gridbox average surface fluxes for a
surface variable distribution using numerical or analytical in-
tegration over the appropriate PDF.Walland and Simmonds
(1996) used sub-grid statistics (variance, kurtosis) of distri-
butions of topographical parameters to improve the simula-
tion of the snowpack in GCMs.

Mountain regions exhibit more relevant dimensions which
control land surface processes than more gently inclined
areas (e.g., elevation, aspect, slope, etc.). This means that
a simple mosaicing of the land surface is not appropriate
and a more sophisticated technique is needed to account
for this heterogeneity. While, statistical models exist (e.g.
Boeckli et al., 2012) which provide good 2-D representation
of single phenomena in complex topography, they usually do
not resolve transient changes. Finally, methods exist (e.g.,
SAFRAN-Crocus scheme;Durand et al., 1993, 1999) which
classify topography according to fixed classes based on ter-
rain parameters and enable application of numerical models
over large areas in a semi-distributed fashion. However, we
suggest that a more flexible method that allows for continu-
ous and unprescribed classification, which is optimised to the
region and variables of interest, is a useful extension of such
methods.
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In this paper, we describe a sub-grid method which sam-
ples the most important aspects of land surface heterogeneity
based on input predictors (PREDs) which describe important
dimensions of variability in complex topography (e.g., eleva-
tion, aspect, slope, sky view factor). A lumped scheme then
allows for the efficient application of numerical land surface
models (LSMs) over large areas. Aggregation of simulated
target variables (TVs, e.g., ground surface temperature, snow
water equivalent) to the coarse grid and spatialisation to the
fine grid is achieved through membership functions. We use
cumulative distribution functions (CDF) of TVs to provide
statistics of sub-grid behaviour over large areas. This Topo-
graphic SUBgrid tool (TopoSUB) allows for: (1) modelling
of processes at fine grid resolutions, (2) efficient statistical
descriptions of sub-grid behaviour, (3) a “sub-grid aware”
aggregation of simulated TVs to coarse grids and (4) en-
ables validation of results with fine-scale ground truth. The
strength of the scheme is its ability to enable the computa-
tional representation of fine-scale processes over large ar-
eas by several orders of magnitude faster than a distributed
model and, therefore, free resources for spatially or tempo-
rally expensive simulations as well as for exploring uncer-
tainties in input data (e.g., climate projections) or LSM pa-
rameters and physics. While we acknowledge that a lumped
approach compromises on 2-D representation (e.g., snow re-
distribution, surface runoff) it enables the application of so-
phisticated 1-D physics over large areas.

This paper provides a proof of concept of this tool by de-
scribing the method, providing guidance on parameter selec-
tion and performing validation experiments against baseline
distributed model simulations. Whilst TopoSUB is designed
as a tool for use in complex topography – the concept may
also be of interest outside of mountain environments where
alternative dimensions of variability are important.

2 Generic methods

2.1 K-means clustering

Samples are formed using theK-means clustering algorithm
of Hartigan and Wong(1979), an unsupervised learning al-
gorithm which is a suitable for clustering multidimensional
data.K-means aims to partition all points intoK clusters
such that the total sum of squares (or squared deviations)
from individual points (pixels) to the assigned cluster cen-
troids in multivariate attribute space is minimised. This then
represents an optimal clustering of points in attribute space
for a prescribed number of samples. The algorithm is com-
posed of the following steps:

1. Randomly placeK points into the space represented by
the objects that are being clustered. These points repre-
sent initial group centroids/seeds.

Table 1.Speedst (min) of K-means in terms of parameters, cluster
numberk, pixel numberp, and nstartn. TheK-means algorithm
run time is less sensitive to cluster number (test 1,2) than to pixel
number (test 1, 3). Speed up is obtained by sampling (test 4 + 5=

2.16 min) and represents approximately a ten fold speed up based
on 10: 1 sampling ratio.

Test p k n t

1 1 m 64 10 22.23
2 1 m 32 10 18.99
3 250 k 64 10 4.71
4 100 k 64 10 1.13
5 1 m 64 1 1.03

2. Assign each object to the group that has the closest cen-
troid.

3. When all objects have been assigned, recalculate the po-
sitions of theK centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move.
This produces a separation of the objects intoK clusters
from which the metric to be minimised can be calcu-
lated.

Although it can be proven that the procedure will always
terminate, theK-means algorithm is sensitive to the ini-
tial configuration of cluster seeds and does not necessarily
find the optimal configuration (Kanungo et al., 2002), cor-
responding to the global objective function minimum (as op-
posed local minima). TheK-means algorithm is run multiple
times to reduce this effect.

This multipleK-means algorithm has three important con-
trolling parameters,K number of clusters,iter.max maxi-
mum allowed iterations of the algorithm andnstart number
of random starts. FixingK at 128 samples, a sensitivity anal-
ysis was performed on iter.max and nstart in order to define
baseline parameter values to be used in TopoSUB. Stable per-
formance, as measured by within sum of squares (WSS) was
achieved for iter.max= 20 and nstart= 10 (Fig.2). Iter.max
shows a much greater variation in WSS over its range as it
is an intrinsic part of theK-means algorithm.K-means is
significantly sensitive to initialisation i.e., location of initial
cluster seeds. For this reason it is highly recommended to
run theK-means algorithm with several random starts and
average the results. A first run ofK-means algorithm is per-
formed on a subset of input data (105 pixels) with 10 random
starts and maximum iterations set to 20 (as previously de-
fined). The cluster centres defined by this clustering of the
subset are used to initialiseK-means for the entire dataset
(106 or more pixels). This allows for significant speed up of
the algorithm (factor of 10, Table1) while not compromising
on the quality of results.
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Fig. 2. The effect of maximum allowed iterations (iter.max) and
number of random starts (nstart) of Kmeans on total within sum of
squares (WSS) of resulting clusters (k = 128).

2.2 Fuzzy membership

In contrast to crisp membership (yes/no), fuzzy methods
allow for varying degrees of membership to multiple sets
(Zadeh, 1965). A membership function is given with a value
in the interval 0–1. We apply fuzzy membership functions to
allow for varying degrees of membership of pixels to mul-
tiple samples. Fuzzy methods of classification are usefully
applied to multivariate classification problems when class
overlap is required to represent continuous phenomena. The
primary advantage of this method over crisp classification is
that fuzzy methods allow for high resolution mapping of the
TV, whilst accounting for topographic variability within each
sample. Membership functions are calculated in two steps.
First, the standardised squared distance (d2) of thei-th pixel
from then-th sample centroidC of thej -th PRED is deter-
mined by:

d2
ni =

v∑
j=1

[(xni − Cnj )/Sdnj ]
2. (1)

where Sd is class standard deviation (Burrough et al., 2001).
Then we can derive the membership,µ of thei-th pixel to the
n-th sample using the formula ofSokal and Sneath(1967):

µni = d2
ni

−1/(M−1)
/

K∑
n=1

d2
ni

−1/(M−1)
, (2)

n = 1,2, ...,K,

i = 1,2, ..., I,

µci ∈ [0,1].

whereM is the so-called fuzzy exponent parameter. This pa-
rameter is a weighting exponent and it controls the degree
of fuzziness of the membership grades. AsM approaches
1, the clustering becomes crisper. AsM becomes very large

(i.e., M > 100), membership becomes almost constant so
that clusters can no longer be distinguished.

The determination of an optimal value forM in a fuzzy
classification process remains an open question (e.g.Okeke
and Karnieli, 2006; Burrough et al., 2000). Commonly cited
values in the literature range from 1.3 to 3 depending upon
application.Okeke and Karnieli(2006) propose a linear mix-
ture model approach to optimise the value ofM for any given
dataset. We found an optimum value to exist between crisp
(M = 1) and very fuzzy (M > 2) by iterating through val-
ues ofM 1–2 in stages of 0.1. We identified 1.4 to give the
most accurate results in majority TVs tested (compared with
a distributed simulation), in our specific test case. However,
the optimal value ofM is not the focus of the present study
and will not be further discussed. A standard fuzzy member-
ship algorithm will compute memberships for all pixels to all
samples, resulting in a membership matrix ofn samples by
p pixels. Even with the modest large area simulation we give
in this paper, this results in matrix of magnitude 108. In or-
der to reduce storage demands we allow a reduced number
of membership dimensions to be prescribed whilst preserv-
ing the functionality of the algorithm. This is achieved by
either (a) prescribing absolute number of membership val-
ues allowed per pixel or (b) setting a target membership level
(i.e., 95 %) and averaging the required number of member-
ships per pixel to achieve this threshold.

2.3 Statistical methods

Test distributions are compared with baseline distributions
using a one-sample Kolmogorov-Smirnov test (KS-test)
which is a non-parametric test for the equality of continuous,
one-dimensional probability distributions that can be used to
compare a sample with a reference probability distribution.
If the sample comes from distributionF(x), then the KS
statistic,D converges to zero. Comparison of simulated fine
grid data against baseline grids is performed using the nor-
malised root-mean-squared error (NRMSE) to allow com-
parison across simulated TVs of different scale ranges. The
RMSE is normalised against the standard deviation of the ob-
servations, being a robust statistic that is less influenced by
outliers than the range. Correlation statistics stated are Pear-
son product-moment correlation coefficients (r-value).

3 TopoSUB methods

TopoSUB is designed to provide an effective approximation
of a spatially distributed grid with a lumped model. A key de-
sign principle is to be generic, allowing for choice of driving
inputs (station data, gridded climate data), numerical model
and output (TVs, resolution) to support a wide range of pos-
sible applications. It has two main modules (Fig.3): a pre-
processor to run only once and a post-processor to run many
times together with an LSM. Because it is intended for use in
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Fig. 3. Structure of the TopoSUB scheme with its two main mod-
ules: (1) pre-processor configures the sub-grid (runs once), (2) post-
processor (runs multiple times together with the LSM).

mountain areas, it needs the ability to accommodate more di-
mensions of variability than is usual in mosaicing techniques
used to partition the sub-grid. Besides differing surface and
subsurface properties, the effects of elevation, slope expo-
sition, slope angle and horizon elevation are likely to be of
importance. To allow the scalable use of this scheme, i.e.,
its application over large mountain ranges, it should employ
repeatable and robust methods to form sub-grid samples. Be-
cause the influence of predictor variables (dimensions of sub-
grid variability that are accounted for) is not known a priori
and may change laterally, a method for informed sampling
is required in which the importance of predictor variables on
the simulated target variable(s) is evaluated. Model parame-
ters are given in Table2 together with default values.

3.1 Pre-processor

The pre-processor configures the sub-grid by creating sam-
ples for later simulation in the LSM and by determining the
membership functions of original 2-D pixels to those sam-
ples. For a given experimental domain this module need only
be run once. The scheme can use several PRED variables
from which the sub-grid scheme is constructed and usually
these include DEM-derived land surface parameters.

3.1.1 Training routine

The input PREDs are initially clustered using theK-means
algorithm to form a predefined number of samples. Scaling of
PREDs is important because it affects the relative number of
samples formed along a given dimension. With the scaling of
PREDs, we, thus, influence how finely samples are resolved
in which direction, a process that is important to optimise the
number of samples. No scaling could result in, for example,
differing results with elevation provided in units of metres or
kilometres. At this initial stage, a simple scaling (centred and
scaled, Eq. 3) is, thus, applied which normalises all PREDs
to a standard scale under the assumption that all are of equal
importance with respect to simulated TV. Sample centroids
define the topographic and environmental input to the LSM
that is run for this initial set of samples in a training simula-
tion.

PREDn,centred= PREDn − mean(PREDn), (3)

PREDn,scaled= PREDn,centred/sd(PREDn),

PRED= 1...i.

3.1.2 Sample formation by informed clustering

Based on the training routine results, one linear regression
model is constructed for each ofn TVs using the whole set of
i PREDs as regressors (Eq. 4) using generalised least squares
(GLS). GLS is able to handle PREDs with non-normal distri-
butions and/or which are partially correlated and, therefore,
is more robust when implemented as an automated method.
GLS minimises the squared Mahalanobis distance as op-
posed the residual sum of squares, as in regression methods
using ordinary least squares.

TVn = PRED1β1 + PREDiβi + ...., (4)

TV = 1...n,

PRED= 1...i.

The resulting regression coefficients,βi provide an informed
scaling of the PREDi for the clustering algorithm by trans-
forming them into equivalents of the TVn dimension and unit
(Eq. 5). As an example, elevation (m a.s.l.), slope angle (◦)
would be scaled into equivalents of (◦C) if ground tempera-
ture was the target variable.

PREDi,informed= PREDi · βi . (5)

Normalised to a sum of one, these coefficients can be aver-
aged (βmean) to accommodate more than one TV. Parameter
WTV is an optional weighting function for individual TVs if
extra information exists to justify higher weighting of a TV
in the averaging process:
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Fig. 4. (a) Visualisation of 128 samples generated by TopoSUB.(b) Polar plot showing the distribution of samples in terms of predictors
used: elevation, aspect, slope and sky view factor.

Table 2.Parameters used in TopoSUB.

name description default value

K number of samples 128
PREDs input predictors (ele, slp, asp, svf)
TV target variables (GST, SWE, SWin, Tair)
M fuzzy membership exponent 1.4
iter.max maximum iterations ofK-means 20
nstart1 number of random starts for sampleK-means 10
nstart2 number of random starts for all dataK-means 1
µmax number of membership dimensions 20
WTV weighting of TV in informed scale (1,1,1,1)

βmean=
∑
TV

 β∑
PRED

βPRED

 .WTV, (6)

TV = 1, ...n.

The set of PREDs, with informed scaling, are re-clustered
to provide a predefined number of samples that are then
more effectively distributed with respect to the desired TVs
(Fig.4). The sample centroids now provide the required input
to the LSM. Additionally, the regression model can be opti-
mised by using disaggregatedr2 (Genizi, 1993) either man-
ually or automatically, by removing PREDs that contribute
less than a stated threshold to model significance.

We have also implemented a routine which allows for the
dropping of samples that are deemed insignificant. Insignifi-
cant samples are defined as those with fewer members than a
percentage threshold (defined a priori) of a theoretical sam-
ple membership value obtained if all pixels where distributed
equally among samples. The members of dropped samples
are redistributed on a nearest neighbour basis to remaining
samples, in euclidean space.

3.1.3 Pre-processor output

A vector of sample weights is calculated according to to-
tal membership of pixels to each sample. This provides the
means by which to (a) aggregate TVs to the coarse grid
and, (b) provide a rapid statistical description of sub-grid be-
haviour using a CDF. A matrix of membership functions of
individual pixels to samples provides a means of spatialising
results to the fine grid. We employ crisp and fuzzy member-
ship. Crisp membership implies that pixels may belong to
only one sample (that which they are assigned in clustering).
Fuzzy membership allows for varying degrees of member-
ship to multiple samples. This then accounts to some ex-
tent for within sample variance (in terms of PREDs) that
inevitably exists and provides an alternative and smoother
means of spatialisation at reasonable computational cost.

The final output from the pre-processor is the sub-grid
configuration (Fig.5) as defined by: (a) a small matrix of
sample characteristics. These are the environmental char-
acteristics of each sample used to drive the LSM as well
as the aggregated sample weights used for aggregation to
grid level and statistical description of sub-grid behaviour.

Geosci. Model Dev., 5, 1245–1257, 2012 www.geosci-model-dev.net/5/1245/2012/
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Fig. 5.Scheme of pre-processor output options, (A) no spatial, sam-
ple matrix of sample weights and environmental characteristics;
(B1) spatial with crisp membership, single layer maps; and, (B2)
spatial with fuzzy membership, multi-layer maps with a number of
chosen fuzzy membership dimensions.

(b) Membership information for the spatialisation of results
to the fine grid. For crisp membership this has the dimensions
of the original fine grid (B1), for fuzzy membership the ID
and weight for the s most important samples are stored for
each original pixel (Table2), increasing the dimensions of
this information to 2* s times the original size (B2), because
the membership values as well as the sample ID’s need to
be stored per pixel. Based on the sub-grid configuration, the
LSM is run in 1-D mode for each sample.

3.2 Post-processor

Based on the sub-grid configuration, the LSM output is post-
processed. The result of this can either be (a) summary statis-
tics with respect to the coarse grid describing its sub-grid
variability by a CDF or derived quantities; or (b) data spa-
tialised to the original fine grid; or (c) data estimated for a list
of discrete points to support validation studies using ground
truth data. The coarse-grid summary statistics are computed
according to the aggregated membership functions of indi-
vidual pixels to each sample. TVs are spatialised to fine grid
resolution according to the membership functions (crisp or
fuzzy) of each pixel to each significant cluster. This accounts
for the sub-grid heterogeneity that exists between cluster cen-
troids.

4 Simulation experiments

4.1 Data and tools

The high-resolution input into the scheme is a 25 m digi-
tal elevation model (DEM, obtained from Swisstopo). The
DEM used in this study covers a test area of 25.6× 25.6 km
(∼ 106 pixels) in the south-east of Switzerland (Fig.6). The
study area represents a good example of strongly variable
mountain topography (elevation range 1556–4043 m a.s.l.)
with which to test the performance of the scheme. Land

Fig. 6. Study region (25.6× 25.6 km) in the upper Engadin,
Switzerland. Location of driving climate station in red.

surface parameters, slope (degrees), aspect (degrees) and sky
view factor (fraction, 0–1) are derived from the DEM using
SAGA-GIS. Driving meteorology is provided by a high el-
evation MeteoSwiss synoptic weather station (Corvatsch) at
3315 m a.s.l. We use an hourly time series of air tempera-
ture, relative humidity, global radiation, wind speed, wind
direction and precipitation over the period 1 July 2009 to
1 July 2010. Based on 28 yr of climate data (1982–2009)
from the driving meteorological station, the mean annual
temperature is−5.15◦C and the mean total annual precipi-
tation is 876 mm. The mean annual 0◦C isotherm is at ap-
proximately 2200 m a.s.l. Station data (1985–2010) in the
simulation domain from Samedan (1709 m a.s.l.) and Passo
del Bernina (2307 m a.s.l.) give mean winter (DJFM) snow
depths of 43 and 209 cm and mean March depths of 36 and
226 cm, respectively.

4.2 Land surface model

We employ the open-source LSM GEOtop (Endrizzi and
Marsh, 2010; Dall’Amico et al., 2011; Rigon et al., 2006)
which is a physically-based model that simulates the coupled
energy and water balance with phase change in soil, a multi-
layer physically-based snow-pack model and surface energy
fluxes in 1-D and distributed 2-D modes. It has been designed
specifically for application in mountain regions. The model
domain consists of a soil column of user-specified depth (typ-
ically of a few metres) from the ground surface, which is, in
turn, defined by a Digital Elevation Model (DEM). The heat
and subsurface water flow equations are then solved with fi-
nite differences schemes.

The multi-layer snow pack scheme accommodates com-
paction as well as water percolation and refreezing. The
influence of topography on micro-climatology is parame-
terised, allowing for the solution of the surface energy bal-
ance for differing topographic situations based on one driv-
ing climate time series (Endrizzi and Marsh, 2010; Liston

www.geosci-model-dev.net/5/1245/2012/ Geosci. Model Dev., 5, 1245–1257, 2012
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and Elder, 2006). A vegetation canopy was not considered in
these experiments. The soil is uniform over the entire simula-
tion domain, parameterised using the Van-Genuchten model
(Van Genuchten, 1981), and has 5 layers and a total depth of
3.1 m. The model is run on an hourly timestep. We apply two
years of spin up and then generate 1 yr of data.

The meteorological data, input as point time-series are
spatially distributed by GEOtop to each simulation point
using principles of the Micromet model (Liston and Elder,
2006). Specifically: (1) Air temperature follows a mean lapse
rate (6.5◦C km−1). (2) Since relative humidity is a nonlinear
function of elevation, the dewpoint temperature is used for
vertical extrapolation. (3) Model time step is used to calcu-
late the solar radiation for that specific time. In addition, the
influence of cloud cover, direct and diffuse solar radiation,
and topographic slope and aspect on incoming solar radia-
tion is accounted for. The distributed version has self and
cast shadowing based on DEM, point has self and a uniform
horizon elevation. (4) Precipitation is not adjusted.

4.3 Testing strategy

The primary aim of this evaluation is to test how well Topo-
SUB is able to reproduce results of a distributed model. This
is done by comparing results obtained from TopoSUB with
results from a distributed LSM simulation on a regular 2-D
grid. Both runs use the same LSM, GEOtop and same mete-
orology distribution scheme described in Sect. 4.2. The key
difference is that the simulation units are (a) samples result-
ing from clustering of predictors in TopoSUB and, (b) pixels
at DEM resolution in distributed runs. The distributed runs
have diverse spatial resolutions ranging from 25 m (106 cells)
to 25 km (1 cell). TopoSUB is also run at differing reso-
lution i.e., different levels of detail (number of samples) in
the sampling of the sub-grid. In all experiments, both Topo-
SUB and distributed runs are evaluated with respect to a 25 m
distributed simulation (BASE), which we consider to be the
baseline in this experiment, being the most finely discretised
representation of the experiment domain. Experiments pre-
sented in results are: (Sect. 5.1) grid aggregated results com-
pared directly with corresponding statistics of BASE. For
this, the mean and standard deviation as well as the 25th
and 75th percentiles are calculated; (Sect. 5.2) statistical de-
scription of sub-grid behaviour is evaluated by comparing the
CDF of TopoSUB simulation to CDF of BASE simulations
using KS-test; and, (Sect. 5.3) fuzzy spatialised results are
compared to BASE using the r-value and NRMSE to assess
the predictive power of the scheme at the grid cell level. Fi-
nally, other aspects of TopoSUB performance are presented
(Sects. 5.4–5.6). To keep computation times for the 25 m res-
olution BASE simulation reasonable, water movement in the
soil was not considered.

4.4 Model settings

For testing, input PREDs of elevation, aspect, slope and sky
view factor are used in the clustering algorithm, all computed
from the input DEM at 25 m resolution. In all experiments we
simulate output response variables of air temperature (Tair,
◦C), ground temperature at 10 cm depth (GST,◦C), snow
water equivalent (SWE, mm) and incoming shortwave radia-
tion (SWin, W m−2). These were chosen as suitable variables
with which to test the performance of the TopoSUB scheme
in terms of representing both near surface processes and en-
ergy fluxes. Air temperature represents a simple check of the
scheme due to straightforward relationship with elevation in
this study (using a standard lapse rate). SWin represents how
well the scheme is able to represent topography with respect
to parameters relevant to radiation modelling. Snow water
equivalent and GST both represent important physical pro-
cesses in mountain areas. TVs are analysed as mean annual
values in all cases. Spatialised TopoSUB results are evalu-
ated on a pixel by pixel basis whereas aggregated results are
by definition evaluated as a mean value of the simulation do-
main. Model parameters are set per default values in Table2.

5 Results

5.1 Grid aggregated output

Grid aggregated results from both TopoSUB and distributed
runs are analysed as deviations from BASE simulation for
increasing sample numbers (TopoSUB: samples, distributed:
pixels) that represent computational cost (Fig.7). The sim-
ulated TVs approximate the BASE results well requiring
103–104 times less computations. The convergence of re-
sults for the tested TVs at 100–200 samples in the sub-grid
scheme suggests that we are able to reach a stable perfor-
mance. A convergence of results with resolution is not ob-
served in distributed simulations (except for the simple vari-
able of air temperature) underscoring the importance of at-
tention to scaling issues. Figure7 also shows the improve-
ment in aggregated information between a grid average com-
putation (1 sample), as is common in climate models, and a
200 sample TopoSUB simulation, that is capable of approx-
imating the BASE simulation (which is explicitly modelling
sub-grid processes).

5.2 Statistical description of sub-grid behaviour

CDFs are calculated using aggregated sample weights and
provide a rapid description of sub-grid behaviour by pre-
senting the distribution of simulated TVs without the need
for spatialisation. This technique enables rapid assessments
such as percentage of permafrost in the simulation domain
or the total SWE. A good fit is seen in all cases (Fig.8).
These statistics can be readily presented against topographic
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Fig. 7. Aggregated statistics: mean (bold), 25th and 75th percentile
(non-bold) of the sub-grid scheme at resolutions 1–1024 samples
(blue) and distributed simulations (red) spanning resolutions of 4–
106 pixels. Vertical lines indicate 16 and 128 samples. A stable per-
formance is reached after the 128 sample level in all cases. Topo-
SUB is able to approximate aggregated 2-D simulation at 104 less
computations. Note logarithmic X-scale.

attributes to give more detailed understanding of the sub-grid
e.g., permafrost extent by elevation band or exposures.

5.3 Spatialised output

Spatialised results are obtained by distributing LSM results
based on the crisp or fuzzy membership of each pixel, re-
sulting in a 25 m resolution mapping of TVs. Based on con-
vergence of the NRMSE and correlation coefficient of the
TopoSUB scheme it can be seen that, at least in our test case,
the majority of performance is gained until 64 samples, af-
ter 258 samples a stable performance is achieved (Fig.9).
This represents a reduction of computational effort of three
to four orders of magnitude compared with the BASE simula-
tion (depending on required quality level), a similar result to
Sect. 5.1. Figure10 gives density scatter plots of all TVs for
258 samples. TopoSUB is able to reproduce the BASE sim-
ulation with an NRMSE of 12–28 % depending on the TV.
Figure11provides a visual comparison of the simulation re-
sults for GST presented as deviation from BASE simulation
(BASE TopoSUB), as well as a histogram of error distribu-
tion. The source of this error was investigated through a re-
gression analysis of difference against PREDs. By restricting
the dataset to values> 1◦C and< −1◦C we could ensure
the signal was not masked by the (vast majority of) low er-
ror values. The model explained 47 % of variance (increased

Fig. 8. CDFs of mean annual simulation results derived from the
sub-grid scheme (blue) based on 258 samples and a distributed sim-
ulation (red) based on 106 pixels. A good fit is reported by a KS-test
(D). Aggregated summary statistics can be computed directly from
the CDF, for example percentage area with MAGST< 0◦C (red
dotted line, top-left figure).
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Fig. 9.The predictive power of the lumped scheme is assessed using
the (a) r-value (b) NRMSE at resolutions 2–400 samples with re-
spect to baseline distributed grid simulation. The majority of perfor-
mance is gained until 64 samples (first dotted line). After 258 sam-
ples a reasonably stable performance is achieved (second dotted
line).

to 62 % by including interacting effects). A relative impor-
tance metric derived from decomposedr2 value (Genizi,
1993) gives the percentage of variance explained by model
attributable to each PRED, as follows: sin(aspect)= 38 %,
cos(aspect)= 24 %, slope= 20 %, elevation= 14 % and sky
view factor= 4 %. This shows that the spatial component of
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Fig. 10.Density scatter plot of TopoSUB/BASE after informed scal-
ing and fuzzy spatialisation at 258 samples. Data presented is mean
annual value for each pixel in the simulation domain. All TVs are
reproduced with low error as reported by the correlation coefficient
(r) and RMSE (computed over 106 pixels). The diagonal line rep-
resentsy = x.
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Fig. 11. (a)A visual comparison of the simulation results for GST
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tics show the error to be reasonable: RMSE= 0.6, bias= −0.15,
standard deviation= 0.58.

the error is a reasonably even result of interactions among the
PREDs, with only sky view factor being insignificant.

5.4 Temporal errors

Figure 12 shows the temporal error signature of the four
tested target variables as 5-day mean values for the whole
simulation domain, as absolute values for BASE, TopoSUB
and difference between BASE simulation and TopoSUB.
This figure shows that there is a temporal signature of the
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Fig. 12. Temporal characteristics of the mean domain values plot-
ted at 5-day intervals for each target variable as simulated by BASE
(red), TopoSUB (blue) and difference, BASE TopoSUB (green). Er-
rors are relatively small in all cases. A stronger negative bias in
SWin during winter months (approx. 2 W m−2) and an increasing
positive bias in SWE during the main snow melt months (April–
June) up to 7 mm.

error of TopoSUB (at this temporal resolution), but also, that
it is relatively small. Swin and SWE show the most obvious
temporal trend with a stronger negative bias in SWin dur-
ing winter months (approx. 2 W m−2) and an increasing pos-
itive bias in SWE during the main snow melt months (April–
June), up to 7 mm. The temporal dimension is an extension
of the multivariate problem and clustering may need to be
tuned to fit certain seasons in much the same way as simulat-
ing different target variables (through informed sampling).

5.5 Model stability

Figure 13 shows results of 40 simulations of TopoSUB at
each of four resolutions: 25, 50, 100, 200 samples. The pur-
pose being to investigate stability of the tool and any reso-
lution dependency of its repeatability. The deviation of each
simulation from mean values of mean and quantiles 25/75
of all 40 simulations indicates reasonable repeatability even
at low resolutions, as indicated by a low absolute deviation.
This demonstrates that the result is not significantly sensi-
tive to variations in theK-means clustering algorithm (which
are generally small and diminishing with increasing sample
number).

5.6 TopoSUB configurations

Figure14 gives NRMSE for SUB (128 sample) simulations
with the configurations: “fuzzy informed”, “fuzzy simple”,
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Fig. 13.Repeatibility of TopoSUB clustering success expressed as
deviation from mean values of mean and quantiles 25/75 for 40
runs. Results at resolutions of 25–200 samples indicate reasonable
stability even at low resolutions. A significant increase in stability
is seen between 25–100 samples in all variables tested.

“crisp informed”, “crisp simple”. All TV results improve
with fuzzy membership. All TV results except SWin improve
with informed scaling. This is because all TVs are heavily in-
fluenced by PRED “elevation”, except for SWin. During cal-
culation ofβmeanSWin specific PREDs (e.g., sine of aspect)
are down-weighted in favour of elevation – causing reduced
performance for SWin results. This can be corrected for us-
ing the parameterWTV (Eq. 5) depending upon user appli-
cation. These results demonstrate that informed scaling and
fuzzy membership are both useful tools to be applied in the
pre-processor stage. Time-cost associated with these meth-
ods is incurred only once during pre-processing and bene-
fit (improved performance) is received multiple times with
LSM output.

6 Conclusions

This paper has described the TopoSUB scheme and has eval-
uated its performance by comparison with a high resolution
distributed model (BASE), as well as given first indication
of parameter choice. We have obtained promising results for
the use of TopoSUB as robust and efficient tool to support
the large area numerical simulation of processes in complex
mountain topography. The informed sampling procedure is
thought to be an appropriate method by which to sample
a multidimensional sub-grid space without a priori knowl-
edge of the relative importance of dimensions, with respect

GST SWE SWin Tair

fuzzy simple
fuzzy informed
crisp simple
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Fig. 14.NRMSE for 128 sample TopoSUB simulations for configu-
rations: “fuzzy informed”, “fuzzy simple”, “crisp informed”, “crisp
simple”. All TV results improve with fuzzy membership. All TV
results except SWin improve with informed scaling.

to simulated TVs. In the presented case, a sample number of
approximately 64 samples proved sufficient to describe the
wide range of elevations, slope expositions, slope angle and
horizon elevations present in the study area, while 258 sam-
ples approximated well the results of a distributed 2-D simu-
lation of 25 m resolution. While spatialisation proves a valu-
able tool for site specific studies, CDFs of sample results pro-
vide a rapid assessment of sub-grid behaviour.

There are obvious limitations which must be acknowl-
edged due to the tool being based on a 1-D configuration,
namely lateral mass transfers (such as snow redistribution,
although this is commonly neglected even in distributed
models) and flow modelling (surface/subsurface); processes
which are not easily represented in a 1-D model. Addition-
ally, at this stage we do not assume results derived from our
specific test case (as defined by model, parameters and do-
main) will necessarily generalise, this would require more
testing.

The ability of TopoSUB to efficiently approximate a dis-
tributed model as a reduced series of 1-D samples has several
applications:

1. Multiple repeat simulations can be performed which fa-
cilitates exploring of uncertainty in initial and boundary
conditions, model physics, parameterisations/parameter
choice and also future climate scenarios.

2. Long temporal scales can be simulated allowing for
modelling of transient effects.

3. Large areas can be simulated allowing for large scale
assessment of current or possible future conditions.
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4. TopoSUB is able to approximate the results of of a dis-
tributed grid that have been aggregated at coarse grid
level. This suggests interesting prospects for the im-
provement of the representation of mountains or other
environments with important fine-scale processes in
coarse-grid models.

5. This approach is suitable for grid-computing infrastruc-
ture that is becoming increasingly common in many dis-
ciplines and, thus, allows flexible scaling to large tasks.

We envisage TopoSUB to be a useful tool in a wide range of
numerical modelling applications in complex terrain, due to
flexible choice of inputs, numerical models and output op-
tions.

Supplementary material related to this article is
available online at:http://www.geosci-model-dev.net/5/
1245/2012/gmd-5-1245-2012-supplement.zip.
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