CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application

J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin

Department of Climate and Carbon Sciences, Earth Sciences Division, Lawrence Berkeley National Lab (LBL), Berkeley, CA, USA

Correspondence to: J. Y. Tang (jinyuntang@lbl.gov)

Received: 7 August 2012 – Published in Geosci. Model Dev. Discuss.: 10 September 2012
Revised: 18 December 2012 – Accepted: 2 January 2013 – Published: 29 January 2013

Abstract. To improve regional and global biogeochemistry modeling and climate predictability, we have developed a generic reactive transport module for the land model CLM4 (called CLM4-BeTR (Biogeochemical Transport and Reactions)). CLM4-BeTR represents the transport, interactions, and biotic and abiotic transformations of an arbitrary number of tracers (aka chemical species) in an arbitrary number of phases (e.g., dissolved, gaseous, sorbed, aggregate). An operator splitting approach was employed and consistent boundary conditions were derived for each modeled subprocess. Aqueous tracer fluxes, associated with hydrological processes such as surface run-on and run-off, belowground drainage, and ice to liquid conversion were also computed consistently with the bulk water fluxes calculated by the soil physics module in CLM4. The transport code was evaluated and found in good agreement with several analytical test cases using a time step of 30 min. The model was then applied at the Harvard Forest site with a representation of depth-dependent belowground biogeochemistry. The results indicated that, at this site, (1) CLM4-BeTR was able to simulate soil–surface CO₂ effluxes and soil CO₂ profiles accurately; (2) the transient surface CO₂ effluxes calculated based on the tracer transport mechanism were in general not equal to the belowground CO₂ production rates with the magnitude of the difference being a function of averaging timescale and site conditions: differences were large (−20 ∼ 20 %) on hourly, smaller (−5 ∼ 5 %) at daily timescales, and persisted to the monthly timescales with a smaller magnitude (<4 %); (3) losses of CO₂ through processes other than surface gas efflux were less than 1 % of the overall soil respiration; and (4) the contributions of root respiration and heterotrophic respiration have distinct temporal signals in surface CO₂ effluxes and soil CO₂ concentrations. The development of CLM4-BeTR will allow detailed comparisons between ecosystem observations and predictions and insights to the modeling of terrestrial biogeochemistry.

1 Introduction

The trajectory of ongoing climate change (Intergovernmental Panel on Climate Change (IPCC), 2007) depends strongly on greenhouse gas (e.g., H₂O, CO₂, CH₄, and N₂O) exchanges between the terrestrial biosphere and atmosphere. Globally, gross terrestrial ecosystem greenhouse gas fluxes are at least an order of magnitude larger than anthropogenic emissions and have strong climate sensitivity, which can lead to positive feedbacks with the atmosphere (e.g., Cox et al., 2000, Torn and Harte, 2006). Thus, accurately modeling terrestrial biogeochemistry is a critical component of earth system models (Friedlingstein et al., 2006).

Much effort has been dedicated to designing terrestrial biogeochemistry models that account for hydrological, energy, and carbon and nitrogen dynamics (e.g., Randerson et al., 1997; Thornton et al., 2002, 2007; Zhuang et al., 2003 and many others). Many of these existing efforts have used, in each terrestrial gridcell, a single vertically integrated layer for soil biogeochemistry, which we refer to here as a “bucket formulation”, as it is analogous to the single-layer hydrology used in early soil-vegetation-atmosphere transfer (SVAT) models. This formulation is insufficient to resolve the depth-dependent soil biogeochemistry, which depends on interactions between the atmosphere, plants, microbes and soils. A good example for the deficiency of the
bucket formulation is the treatment of wetland ebullition of trace gases, such as methane (CH₄). A sufficient amount of volatile gases (both biogenic and non-biogenic) should be accumulated before the gas column becomes unstable such that convection is triggered to move the gas rapidly from the deep soil up to the soil surface. The convection process can vary drastically under different atmospheric and soil physical conditions, with ebullition happening in some cases and not others, despite similar total soil gas pressures (e.g., Tokida et al., 2007). Another example is the characterization of the aerobic and anaerobic environments in soil, which can have large vertical gradients (and horizontal gradients as well) that the bucket models cannot represent, but clearly affect which processes are dominating the soil biogeochemistry (e.g., Tang et al., 2010; Riley et al., 2011; Grant and Roulet, 2002; Maggi et al., 2008). In addition, the existing bucket-type models cannot simulate biogeochemical variables that are directly comparable with measurements. For example, the CO₂ from soil respiration is often assumed to be measurable at the soil surface instantly after the plant root and soil microorganisms produce it (i.e., the production equals surface efflux assumption), although the characteristic time for transport from the surface to 20 cm depth in a sandy loam soil at 60 % water-filled pore space, for example, is ~10–20 h, depending on the model used to calculate gas-phase diffusivity (Riley, 2005). As such, the bucket-type models cannot resolve episodic greenhouse gas emissions such as those due to freeze-thaw cycles (e.g., Mastepanov et al., 2008). The assumption of production equals surface efflux could also lead to incorrect parameterizations when the soil surface gas efflux measurements are used to calibrate the biogeochemistry submodel.

Depending on the philosophy of the model developers and the model’s intended applications, soil biogeochemistry can be represented with different conceptual structures and model complexities. A few attempts have been made to model the soil–plant–atmosphere exchange of trace gases using a reactive transport modeling (RTM) approach (e.g., Simunek and Suarez, 1993; Fang and Moncrieff, 1999; Grant, 1993; Walter and Heimann, 2000; Tang et al., 2010; Wania et al., 2010; Riley et al., 2011). However, the majority of carbon cycling models still have the one-layer bucket structure, such as the Terrestrial Ecosystem Model (e.g., Zhuang et al., 2003), CENTURY (e.g., Kelly et al., 1997), CASA (e.g., Potter et al., 2003), and CLM-CN (e.g., Thornton et al., 2007).

Existing soil biogeochemical models (either the bucket type formulation or the RTM based formulation) integrated with climate simulating systems usually do not have the ability to represent biogeochemical processes with different levels of complexity by restricting the model designation to a single conceptual structure, which creates a barrier to understand the effects of model structural uncertainty on the simulated carbon-nutrient cycles and their interactions with other components of the climate system. Such designation also makes it difficult to consistently incorporate future developments. For example, most existing methane models focus either only on CH₄, or on both CH₄ and oxygen (O₂), where the latter is used to determine when a given soil layer, or fraction of the soil layer, is sufficiently aerobic or anaerobic to support the activities of methanotrophs or methanogens. An exception is the model documented in Tang et al. (2010), where they solved a system with up to four chemical species (CH₄, CO₂, N₂, and O₂) in gaseous and aqueous phases and considered three different conceptual structures to enable a hierarchical modeling of methane dynamics at different levels of model complexities. This approach allowed them to explore how methane dynamics depended on the different processes being represented. Still, processes such as adsorption and desorption were not considered there, because no sorptive species such as NH₄⁺ or dissolved organic carbon (DOC) were involved in their study, which are critical for a mechanistic modeling of the nitrogen cycle (e.g., Maggi et al., 2008; Gu et al., 2009).

Field studies also indicate that it is important to consider slower processes such as bio-turbation (e.g., Yoo et al., 2011) and cryoturbation (e.g., Kaiser et al., 2007) in order to correctly model biogeochemistry in some terrestrial ecosystems. These slow processes have been included in some terrestrial biogeochemistry models (Jenkinson and Coleman, 2008; Koven et al., 2009); however, to our knowledge, no current land model in climate simulating systems exists that integrates both slow and fast processes contributing to vertical differences in biogeochemical cycling.

As understanding of terrestrial ecosystem processes improve, we face the situation of revising biogeochemistry models to incorporate new processes while not losing the legacy of previous model development (see Schmidt et al., 2011 for a perspective discussion on such needs). This situation motivates the development of a generic model template that can relatively easily accommodate new model structures and processes. To meet this and other challenges discussed above, we present here the development of CLM4-BeTR, which includes a flexible modeling structure of terrestrial ecosystem biogeochemistry and a generic multi-phase reaction and transport capability. CLM4-BeTR is integrated in CLM4 (Oleson et al., 2010), which is the land component of the Earth System Model CESM1.0, thereby allowing simulations that integrate processes involving plants, soils, ocean, atmosphere, urban areas, and land and sea ice. We organize the paper as follows: Sect. 2 describes model structure and parameterization, numerical methods, and theoretical predictions; Sect. 3 presents site level model evaluations; and Sect. 4 presents an example application. Finally, we conclude with a summary in Sect. 5.
2 Model description

CLM4-BeTR is designed to use a hierarchy of subsurface biogeochemistry models with different levels of complexity and structures and to couple the biogeochemical processes tightly with the physical processes, such that model predictions are as relevant as possible to what can be measured in field experiments (Fig. 1). In designing this model structure, we consider the close coupling between various components of a soil–plant–atmosphere system and track the physical (e.g., advection and diffusion), biophysical (e.g., bioturbation), chemical (e.g., aqueous chemistry), biochemical (e.g., microbial degradation), and biological dynamics (e.g., microbial physiology) of an arbitrary number of tracers. Throughout this study, we name any chemical species of interest as a tracer in order to be consistent with the terminology that is adopted in atmospheric biogeochemistry, to which that CLM4-BeTR will be coupled in our future studies. Specifically, we, starting from the atmosphere, consider tracers precipitated to the soil surface and plant canopy through both dry and wet atmospheric deposition. Volatile tracers such as CO₂ and water vapor are allowed to pass through stomata and enter leaves. Liquid and solid aqueous tracers are allowed to drip off leaves and onto the soil surface. As in the default CLM4, plant litter falls onto the ground and proceeds through a cascade of decomposition. With the microbially-regulated decomposition of litter-derived organic matter and of plant root exudates, relevant tracers are released into the soil and are allowed to move and interact with flowing water and other chemical tracers through both biogeophysical and biogeochemical pathways. All aqueous tracers are allowed to move out of the soil column when the water is drained away, through both over-surface and sub-surface runoff. Volatile tracers are allowed to evaporate back into the soil pore space and atmosphere, and diffuse between the two. Such a structure also makes it possible to extend the depth-resolved modeling approach from the soil into the canopy air and connect with atmospheric chemistry and physics modules.

Below, we first derive the lumped equations for the reactive transport system. Based on the physical characteristics of the different processes, the operator splitting approach (e.g., Strang, 1968) is applied to solve the governing equations. Consistent boundary conditions are presented for the advective and diffusive transport of tracers. Numerical implementations are also presented for solving the advection and diffusion equations, followed by descriptions of the methods that are used to diagnose tracer fluxes associated with belowground water flow.

2.1 The governing equation

We formulate the general multiphase (here for three phases: solid, aqueous, and gaseous) advection-diffusion-reaction equation as

\[
\frac{\partial}{\partial t} \left( C_s + \theta C_w + \varepsilon C_g \right) = \frac{\partial}{\partial z} \left( D_s \frac{\partial C_s}{\partial z} \right) + \frac{\partial}{\partial z} \left( \theta D_w \frac{\partial C_w}{\partial z} \right) + \frac{\partial}{\partial z} \left( \varepsilon D_g \frac{\partial C_g}{\partial z} \right) + \frac{\partial}{\partial x} \left( \frac{\partial u_s C_s}{\partial z} \right) - \frac{\partial}{\partial x} \left( \frac{\partial u_w C_w}{\partial z} \right) - \frac{\partial}{\partial x} \left( \frac{\partial u_g C_g}{\partial z} \right) + R,
\]

where \( C_s, x = s, w, g \) (mol tracer m⁻³) are tracer concentrations in solid, aqueous, and gaseous phases, respectively; \( D_s, x = s, w, g \) (m² s⁻¹) are diffusivities for tracers in solid (e.g., Koven et al., 2009), aqueous, and gaseous phases, respectively; \( u_s, x = w, g \) (m s⁻¹) are the advective velocities for aqueous and gaseous tracers, respectively, which are provided by the soil physics model; \( \theta \) (m³ m⁻³) is the water filled soil porosity; \( \varepsilon \) (m³ m⁻³) is the air filled porosity; \( z \) (m) is the spatial coordinate (positive downward); \( t \) (s) represents time; and \( R \) (mol tracer m⁻³ s⁻¹) defines the net tracer production rate at time \( t \) and depth \( z \). Other soil processes such as erosion (Nearing et al., 1994), aggregation and disaggregation (Heuvelink and Pебesma, 1999), sedimentation transport (Merritt et al., 2003), and bioclogging (e.g., Maggi and Porporato, 2007) could also be incorporated into Eq. (1), provided the soil physical processes are modeled consistently. The tracer movement due to horizontal water flow is treated as a separate process and described in Sect. 2.4.

In Eq. (1), we considered diffusive and advective transport for both the aqueous and gaseous tracers. The vertical movement of the adsorbed (s) phase is parameterized as a diffusive process as in Koven et al. (2009). The reaction term \( R \) includes both net chemical production inside the soil and fluxes due to plant roots, e.g., autotrophic respiration, exudation, and possible transpiration induced fluxes, e.g., NO₃ uptake through roots (Plhak, 2003) and soil CO₂ transport through root systems into xylem water (Teskey et al., 2008).

Equation (1) is sufficiently general that it can represent the transport of any well-defined chemical tracer. For example,

Fig. 1. Model structure of CLM4-BeTR: the example is based on the carbon and nitrogen cycles.
by ignoring the transport of water vapor in soil, Eq. (1) is reduced to the soil water budget equation currently implemented in CLM4,

$$\frac{\partial}{\partial t} (C_s + \theta C_w) = - \frac{\partial u_w C_w}{\partial z} - q_T,$$

(2)

where $C_s$ and $C_w$ effectively represent the molar concentrations of ice and liquid water, respectively and $q_T$ (mol water m$^{-3}$ s$^{-1}$) represents the sink of water due to transpiration.

We adopted the fast equilibrium assumption, i.e., equilibrium of tracer concentrations between phases is instantaneously achieved (e.g., Maggi et al., 2008). For instance, NH$_3$ is considered to exist in three phases in equilibrium: gaseous, lumped aqueous, and adsorbed solid. The lumped aqueous phase includes both NH$_3$OH and free NH$_4^+$, whose relative concentrations are determined by the equilibrium stoichiometry:

$$\text{NH}_4\text{OH} \leftrightarrow \text{NH}_4^+ + \text{OH}^-.$$

(3)

Adopting Eq. (3) enables one to group NH$_3$OH and NH$_4^+$ into a single tracer (NH$_4^+$)$_w$, which is related to NH$_3$OH through

$$[(\text{NH}_4^+)_w] = k_{\text{NH}_3,\text{NH}_4^+} [\text{NH}_3\text{OH}],$$

(4)

where the equilibrium constant $k_{\text{NH}_3,\text{NH}_4^+}$ (unitless) is a function of pH and temperature. Further, invoking Henry’s law, one has [NH$_3$OH] $= B [(\text{NH}_3)_g]$, where $B$ (unitless) is the Bunsen solubility coefficient (Sander, 1999). Therefore, we have the bulk concentration of NH$_4^+$:

$$[\text{NH}_4^+] = \theta \left[ (\text{NH}_4^+_w) + \epsilon [(\text{NH}_3)_g] + [(\text{NH}_4^+)_s] \right],$$

(5)

as the single state variable to represent the chemical species related to NH$_3$. In Eq. (4), $[(\text{NH}_4^+_w)]$ is the adsorbed phase, which is assumed to be in equilibrium with free NH$^+_w$ dissolved in water, with a sorption parameter dependent on pH, soil texture, and soil organic matter content.

Similarly, the bulk concentration of CO$_2^X$ is defined as

$$\text{CO}_2^X = \theta \left[ [(\text{CO}_2^X)_w] + \epsilon [(\text{CO}_2)_g] \right]$$

$$= \theta \left[ (\text{H}_2\text{CO}_3^-) + [\text{HCO}_3^-] + [\text{CO}_3^-] \right] + \epsilon [(\text{CO}_2)_g],$$

(6)

where the relative concentrations of H$_2$CO$_3$, HCO$_3^-$, and CO$_3^{2-}$ are determined by their equilibrium stoichiometry (e.g., Maggi et al., 2008; Gu et al., 2009).

2.2 Numerical implementation

We used the operator splitting approach (e.g., Strang, 1968) to solve Eq. (1), which allowed us to use standard numerical solvers to deal with different processes while maintaining numerical efficiency. We grouped the various processes into three different terms, allowing us to rewrite Eq. (1) as

$$\frac{\partial C_{\text{blk}}}{\partial t} = \text{Dif} + \text{Adv} + R,$$

(7)

where $C_{\text{blk}}$ (mol tracer m$^{-3}$) is the bulk tracer concentration, including contributions from all possible phases; Dif, Adv, and R represent, respectively, the impacts of diffusion, advection, and reaction (mol tracer m$^{-3}$ s$^{-1}$).

Using the Strang splitting approach (Strang, 1968), we represented Eq. (7) as

$$C_{\text{blk}} (t + \Delta t) =$$

$$\left( \text{Dif}, \Delta t/2 \right) \left( \text{Adv}, \Delta t/2 \right) \left( R, \Delta t \right) \left( \text{Dif}, \Delta t/2 \right),$$

(8)

where $(x, \Delta t)$ denotes the integration of process $x$ over a time step $\Delta t$ (s). This operator splitting formulation also allows us to consider the horizontal transport of the tracers, making our development easily implemented in models that have 3-D tracer transport capability. The integrations in Eq. (8) are done consecutively from right to left, where the solution from a previous integration is used as an initial condition for the next. All these integrals are formulated using the finite volume method (e.g., Eymard et al., 1999).

The soil physical variables (such as temperature, liquid and ice content of soil water and snow, water table, vertical and horizontal water fluxes) to drive Eq. (8) are provided by the soil physics module of CLM4, which solves the mass and energy transport equations of water and soil (Oleson et al., 2010). Aqueous and gaseous tracer diffusivities are computed as a function of soil moisture and soil temperature (Appendix A). The solid phase tracer (including adsorbed phase) diffusion is considered as a much slower process (e.g., Koven et al., 2009), such that it can be separated from Eq. (8) and calculated after the movement of aqueous and gaseous tracers. Specifically, by writing the diffusion processes in Eq. (8) as $\Delta (\text{Dif}, \Delta t/2) = (\text{Dif}_s, \Delta t/2) (\text{Dif}_g, \Delta t/2)$, where $\text{Dif}_s$ represents diffusion of solid phase tracer, and $\text{Dif}_g$ represents diffusion of aqueous and gaseous phase tracer, it can then be shown that $C_{\text{blk}} (t + \Delta t) = (\text{Dif}_s, \Delta t/2) C_{\text{blk}^*} (t + \Delta t) (\text{Dif}_g, \Delta t/2)$, where $C_{\text{blk}^*} (t + \Delta t)$ represents the tracer update due to processes other than solid phase diffusion. Thus, because the temporal updating of the tracer concentration is done iteratively, the solid phase tracer diffusion becomes a process that can be split from the other processes.

2.2.1 Diffusive transport

The Crank–Nicolson approach (e.g., Press et al., 1986) was used to solve the diffusion process. In contrast to previous approaches, which only consider the existence of a single water table level (or, more generally, wetting front) and restrict it to the connecting interface between two consecutive grid layers, in this study we allow multiple water table levels.
to coexist inside the soil (to accommodate the existence of perched water table, Swenson et al., 2012), and they can be within the grid layer rather than being restricted to the grid interface. However, only one wetting front is allowed to exist in a single grid layer, though our approach is extendable to consider more general cases. Specifically, the incoming flux from layer \( j - 1 \) to layer \( j \) \((j \text{ increases with depth})\) is computed as \((\text{Fig. 2})\)

\[ F_{j-1 \rightarrow j} = -r_{j-1}^{-1}(aC_j - C_{j-1}), \quad (9) \]

and the outgoing flux from layer \( j \) to layer \( j + 1 \) is computed as

\[ F_{j \rightarrow j+1} = -r_j^{-1}(C_{j+1} - bC_j), \quad (10) \]

where

\[ r_j^{-1} = \frac{\Delta z_{j-1}}{2D_{j-1} + 2D_{j-1,b}} + \frac{\Delta z_b}{2D_{j-1,b}} \left( \frac{B_{j-1}\theta_{j-1} + \varepsilon_{j-1}}{B_{j-1}\theta_j} \right), \quad (11a) \]

\[ r_j = \frac{\Delta z_{j+1}}{2D_{j+1} + 2D_{j+1,a}} + \frac{\Delta z_a}{2D_{j+1,a}} \left( \frac{B_{j+1}\theta_{j+1} + \varepsilon_{j+1}}{B_{j+1}\theta_j + \varepsilon_j} \right), \quad (11b) \]

\[ a = \frac{\Delta z_a}{\Delta z_j} + \frac{\Delta z_b}{B_{j+1}\theta_{j+1} + \varepsilon_{j+1}}, \quad (11c) \]

\[ b = \frac{\Delta z_a}{B_{j+1}\theta_{j+1}} + \frac{\Delta z_b}{\Delta z_j}. \quad (11d) \]

\( \Delta z_a \) is the distance from the wetting front to the upper boundary of numerical node \( j \), and \( \Delta z_b \) is the distance from the wetting front to the lower boundary of numerical node \( j \). Equations (9)–(11) are used to solve the diffusion of aqueous and gaseous tracer, where we used \( C_j = \theta_j C_w + \varepsilon_j C_g,j \) and assumed that transport of the adsorbed phase of the tracer (if it does exist) can be considered separately as justified in the formulation of Eq. (8). When the water table level overlaps the grid interface, Eqs. (9)–(11) become identical to the relationships used in Riley et al. (2011).

### 2.2.2 Advevtive transport

In order to be consistent with the way that CLM4 updates soil water content, the advection operator is next solved for soil aqueous phase tracers:

\[
\theta \frac{\partial C_w}{\partial t} = -\frac{\partial u_a C_w}{\partial z} - \left( q_T + \frac{\partial \theta}{\partial t} \right) C_w. \quad (12)
\]

Currently, gas advection is accounted for by a pressure adjustment approach (e.g., Tang et al., 2010), such that the gas column is always hydrostatically stable. In future work we will incorporate an explicit Darcy solver for gaseous advection.

Since the soil moisture and water fluxes are updated before the advection of the aqueous tracers, Eq. (12) is solved as

\[
\theta^{n+1} \left( C_w^{n+1} - C_w^n \right) = U^n - \left( q_T + \frac{\partial \theta}{\partial t} \right)^{n+1} C_w^{n+1}, \quad (13)
\]

where \( U^n \) is the forward-in-time upstream discretization (Tremback et al., 1987) of the advection term in Eq. (12). In the model, whether a particular aqueous tracer is allowed to move with the transpiration flux \( q_T \) is set prior to runtime. As such, CLM4-BeTR provides a method to assess the importance of transpiration-induced tracer fluxes. For instance, the movement of soil CO\(_2\) into roots and xylem water (Teskey et al., 2008) or nutrient uptake in the transpired water flow when the plant’s nutrient demand (e.g., Pihak, 2003) can be explored with this model structure by further considering relevant storage pools in plant.

#### 2.2.3 Tracer movement in snow

The aqueous tracer movement associated with snow accumulation and melt are computed in a similar way as for aerosols in CLM4 (Oleson et al., 2010). CLM4 assumes aerosols are uniformly sorbed to the snow particles and redistributes them according to the change of snow mass, while assuming no diffusive movement of those aerosols. Besides considering snow sorption, CLM4-BeTR also considers tracer movement through both advection and diffusion, and uses the fast equilibrium approximation to partition the relative mass of a tracer in its different phases in the snow.

#### 2.3 Boundary conditions and surface flux calculation

The top boundary condition for advection is determined by the flux from atmospheric precipitation and canopy dripping, either in the form of snowfall or rainfall, or both. We modeled the soil–atmosphere diffusive exchange using the two-layer model that has been widely used for parameterizing bi-directional soil–atmosphere trace gas exchange (e.g., Wu et
Fig. 3. The relationship between gas concentrations at different levels (i.e., \( z_a \) is the center of the top soil control volume, \( z_r \) is the apparent sink level, and \( z_g \) is the atmosphere reference height) and their relevant resistances. The relationships are explained in text.

\[ F_{surf} = \frac{C_a - C_{1,g}}{r_a + r_{surf}} \]

where \( C_{1,v} \) (mol tracer \( m^{-3} \); subscript i means inside leaf) is the weighted leaf internal gas concentration (including contributions from sunlit and shaded leaves, see Appendix B) of a given tracer; \( C_a \) (mol tracer \( m^{-3} \)) is the atmospheric gas concentration; and \( C_{1,g} \) (mol tracer \( m^{-3} \)) is the top soil control volume gas concentration. The surface (\( r_{surf} \)), vegetation (\( r_{veg} \)), and weighted bulk (\( r_T \)) resistances (\( s \) m\(^{-1} \)) are defined as

\[ r_{surf} = \frac{r_{a,s} + r_{b,s} + r_{s,s}}{2D_1(B_1\theta_1 + \varepsilon_1)}, \]

\[ r_{veg} = r_{b,v} + r_{s,v}, \]

\[ r_T = \frac{1}{r_{surf}} + \frac{1}{r_{veg}} + \frac{1}{r_a}, \]

where \( r_{a,s} \) (s m\(^{-1} \)) is the aerodynamic resistance inside the canopy air; \( r_{b,s} \) (s m\(^{-1} \)) is the soil surface laminar boundary layer resistance; \( r_{s,s} \) (s m\(^{-1} \)) is the resistance due to surface litter (Sakaguchi and Zeng, 2009); \( r_a \) (s m\(^{-1} \)) is the aerodynamic resistance above the canopy; \( r_{b,v} \) (s m\(^{-1} \)) is the leaf boundary layer resistance; \( r_{s,v} \) (s m\(^{-1} \)) is the weighted stomatal resistance (Eq. B5 in Appendix B) that includes contributions from sunlit and shaded leaves; and \( \Delta z_1 \) (m), \( \theta_1 \) (m\(^{-3} \) water m\(^{-3} \) soil), \( \varepsilon_1 \) (m\(^3 \) air m\(^{-3} \) soil), and \( D_1 \) (m\(^2 \) s\(^{-1} \)) are, respectively, the thickness, water filled porosity, air filled porosity, and bulk tracer diffusivity defined for the top soil control volume. A derivation of Eq. (15) is provided in Tang and Riley (2012).

The diffusive flux at the soil surface, \( F_{surf} \) (mol tracer m\(^{-2} \) s\(^{-1} \), positive upward), is

\[ F_{surf} = -\frac{C_r - C_{1,g}}{r_{surf}} = -\frac{r_T}{r_{surf}} \left( \frac{C_{1,v}}{r_{veg}} + \frac{C_a}{r_a} \right) + \frac{C_{1,g}}{r_{surf}} \left( 1 - \frac{r_T}{r_{surf}} \right). \]

For a non-vegetated bare soil, \( r_{veg} \) is set to infinity and \( r_{a,s} \) is set to zero, which leads to the diffusive flux up from the surface:

\[ F_{surf} = -\frac{C_a - C_{1,g}}{r_a + r_{surf}} \]

The diffusive efflux from the vegetation, \( F_{veg} \) (mol tracer m\(^{-2} \) s\(^{-1} \)) is

\[ F_{veg} = -\frac{r_T}{r_{veg}} \left( \frac{C_{1,g}}{r_{veg}} + \frac{C_a}{r_a} \right) + \frac{C_{1,v}}{r_{veg}} \left( 1 - \frac{r_T}{r_{veg}} \right). \]

The total diffusive flux of the tracer, \( F_{tot} \) (mol tracer m\(^{-2} \) s\(^{-1} \)), exchanging with the atmosphere is

\[ F_{tot} = \frac{r_T}{r_a} \left( \frac{C_{1,g}}{r_{surf}} + \frac{C_{1,v}}{r_{veg}} \right) - \frac{C_a}{r_a} \left( 1 - \frac{r_T}{r_a} \right). \]

The radiation boundary condition (i.e., tracer only advects along the direction of water flow; e.g., see Raymond and Kuo, 1984) is applied at the lower boundary. However, since CLM4 has no representation of tracer concentrations in groundwater (Oleson et al., 2010), no tracer, except water, is allowed to enter the hydrologically active soil from the aquifer through recharge.

2.4 Tracer flux diagnostics

CLM4-BeTR diagnoses tracer fluxes along different physical pathways explicitly. Tracers from dry and wet deposition to the soil surface are directly added to the first soil (or snow) layer. During snow melting, the aqueous tracers are moved inside the snow layers consistently with liquid water flow. The total aqueous fluxes reaching the soil surface are partitioned into tracer infiltration and run-off loss in accordance with the partitioning of infiltration and surface run-off of liquid water.
To compute horizontal tracer fluxes inside the soil associated with surface runoff, we assumed that aqueous tracers in the first two soil layers (totaling 4.5 cm thick) are in equilibrium with those in the runoff water. The tracer concentrations in these top two soil layers are then updated accordingly. This approach is used as an approximation due to the omission of a prediction of the interactions of surface runoff on near-surface soil moisture in CLM4. This approximation deserves more attention in subsequent model versions.

In order to compute the tracer loss through sub-surface drainage, the fraction of water removed from each hydrologically active layer is tracked explicitly. This fraction of water loss for a given soil layer is assumed to be equal to the fraction of aqueous tracer being lost, and is used to compute tracer loss from that specific soil layer.

In the current version of CLM4-BeTR, tracer fluxes through dew formation and drip from plant-interception are generically included following the approach CLM4 applies to represent these water fluxes, but are considered to be zero in the analyses that follow. For volatile tracers, the surface exchange through diffusion is computed using the gradient-based approach described in Sect. 2.3. Transport through parenchyma or arenchyma is formulated as in Riley et al. (2011). Evaporation is represented using the approach described in Tang et al. (2010), which considers the pressure threshold as done in other studies (e.g., Wania et al., 2010; Riley et al., 2011).

Since the physical parameters to drive diffusive and advective transport are formulated as functions of soil moisture and temperature, the physical effects of the freeze-thaw cycle are considered explicitly during tracer transport. The ice fraction provided by the soil physics module is used to determine the effective porosity of the aqueous and gaseous phases. Whether a given dissolved tracer can be locked into ice is a property that needs to be set prior to runtime. When applied, the change in ice fraction over a time step is used to parameterize the fraction of the dissolved tracer locked into, or lost from, the ice. When the surface soil layer is completely frozen, tracer diffusion to the atmosphere is suppressed. This model feature (not applied in the analyses here) allows us to explore the effect of freeze-thaw cycles on substrate and nutrient availability for plant roots and soil microorganisms, which we will explore in future studies. However, the current version of the model resolves the episodic gas emissions due to changes in effective soil porosity following freeze-thaw events (e.g., Mastepanov et al., 2008).

3 Model evaluation and example applications

Below we first describe the strategies used to evaluate CLM4-BeTR, including a comparison of numerical and analytical solutions and a comparison of model outputs with site-level measurements at Harvard Forest (http://harvardforest.fas.harvard.edu/). Then we present a simple application to show how the tracer tracking capability can provide new insights into interpretation of tracer concentration and flux measurements and their representation in large-scale biogeochemical models such as CLM4.

3.1 Evaluation against analytical solutions

A comparison between the numerical and analytical solutions was conducted to evaluate the accuracy of the 1-D transport simulator integrated in CLM4-BeTR. We used two different analytical solutions to evaluate the code. The two analytical solutions satisfy the 1-D reactive transport equation:

\[
\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left[ D \frac{\partial C}{\partial z} - u \frac{\partial C}{\partial z} \right],
\]

with their respective initial conditions and boundary conditions. Here, \(D\) is diffusivity, and \(u\) is advection velocity (positive downward). In all comparisons between the numerical and analytical solutions, the diffusivity \(D\) was set to \(10^{-6}\) m\(^2\) s\(^{-1}\) and the advection velocity \(u\) was set to \(10^{-7}\) m s\(^{-1}\) (equivalent to an annual drainage of 3.7 m yr\(^{-1}\)).

For the first analytical solution, a pulse tracer input is imposed at the top of a 1-D column of length \(L\), resulting in the tracer concentration \(C\) (mol m\(^{-3}\)):

\[
C = \frac{1}{2} \text{erfc} \left( \frac{z - u t}{\sqrt{4 D t}} \right) + \frac{1}{2} \exp \left( \frac{L z}{2 D} \right) \text{erfc} \left( \frac{z + u t}{\sqrt{4 D t}} \right) + \left[ 1 + \frac{u L}{2 D} \right] \times \exp \left( \frac{u L}{2 D} \right) \text{erfc} \left( \frac{2 L z - u t}{\sqrt{4 D t}} \right) - \sqrt{\frac{u^2}{D}} \exp \left[ \frac{u L}{D} - \frac{(2 L - z + u t)^2}{4 D t} \right],
\]

where \(\text{erfc}(x)\) is the complementary error function of \(x\). For the comparisons, we set \(L = 42.10\) m, corresponding to the maximum depth of the temperature solution currently calculated in CLM4 (computed using Eqs. 6.5–6.7 in Oleson et al., 2010).

For the second analytical solution, the tracer concentration at boundary condition is

\[
C (z = 0) = C_0 + \sum_{i=1}^{2} A_i \exp \left( -\frac{u}{2 D} \sqrt{\frac{2}{4 D}} \sqrt{u^2 + \sqrt{u^4 + 16 D^2 \omega_i^2}} \right) \sin(\omega_i t),
\]

which leads to the wave type analytical solution:

\[
C = C_0 + \sum_{i=1}^{2} A_i \exp \left( -\frac{u}{2 D} \sqrt{\frac{2}{4 D}} \sqrt{u^2 + \sqrt{u^4 + 16 D^2 \omega_i^2}} \right) \times \sin \left( \omega_i t - \frac{\sqrt{2 \omega_i z}}{\sqrt{u^2 + \sqrt{u^4 + 16 D^2 \omega_i^2}}} \right),
\]

where \(A_i, i = 1, 2\), (mol tracer m\(^{-3}\)) are the amplitudes and \(\omega_i, i = 1, 2\), (s\(^{-1}\)) are the frequencies. For the numerical comparison, we set \(C_0 = 12/23\) mol tracer m\(^{-3}\), \(A_1 =\)
\[ \frac{9}{23} \text{ mol tracer m}^{-3}, \ A_2 = \frac{2}{23} \text{ mol tracer m}^{-3}, \ \omega_1 = \frac{2\pi}{(365 \times 86400)} \text{ s}^{-1} \text{ and } \omega_2 = \frac{2\pi}{86400} \text{ s}^{-1}. \] The values of parameters \( C_0, A_1, \) and \( A_2 \) are chosen to ensure that the maximum tracer concentration is 1 mol m\(^{-3}\).

### 3.2 Single point evaluation at the Harvard Forest site

We conducted a single point simulation at the Harvard Forest site with depth dependent C and N dynamics, which includes a vertically resolved soil biogeochemistry, a decomposition cascade, and nitrification and denitrification parameterization based on the CENTURY model (Parton et al., 1988; Del Grosso et al., 2000) for the site level evaluation. The tracer transport capability of CLM4-BeTR was used to evaluate the soil biogeochemistry, which provides the relevant tracer fluxes. To dynamically track the evolution of soil gas pressure, a total of six tracers were modeled: \( N_2, O_2, Ar, CO_2, N_2O, \) and NO. Of the six tracers, Ar is the only one without soil sources or sinks and the others are driven by fluxes provided by the CENTURY biogeochemical formulation implemented in CLM4. We spun up the model for 1000 yr using a repeating 57-yr (1948–2004) cycle of meteorological data extracted from the global dataset (Qian et al., 2006). Another 40-yr simulation was then conducted, from which the average of the last 10 yr of model output were compared with the measurements. The measurement data include \( CO_2 \) effluxes (as derived ecosystem respiration) from the AmeriFlux dataset (level 4 ecosystem respiration flux data, from year 1992 to 2006; http://public.ornl.gov/ameriflux/dataproducts.shtml) and \( CO_2 \) profiles collected at the site from June 1995 to December 2004 (Davidson et al., 2006). Given the uncertainties in meteorological forcing data, model parameterization, and site-model mismatch, we did not try to match the model predictions to the measurements, which would otherwise involve an intensive practice of data assimilation and uncertainty quantification of CLM4 that is beyond the scope of this study. Rather, we grouped the observed daily \( CO_2 \) eddy flux observations into a single-year time series, and compared it with the simulated 10-yr mean daily fluxes and relevant statistics. Similarly, the measured \( CO_2 \) profiles were grouped into monthly time steps to form a single-year time series to enable the comparison.

#### 3.3 Partitioning of surface \( CO_2 \) fluxes with CLM4-BeTR

To illustrate potential applications of CLM4-BeTR, we designed a tagged \( CO_2 \) tracer simulation to visualize the relative contributions of different sources to the measured soil surface \( CO_2 \) fluxes and soil \( CO_2 \) concentrations. Specifically, using the initial conditions provided from the simulations described in Sect. 3.2, we represented the \( CO_2 \) originating from three sources: root respiration, soil heterotrophic respiration, and atmospheric intrusion with three different tracers and tracked their temporal and spatial evolutions with CLM4-BeTR.

![Fig. 4.](image)

**Fig. 4.** Comparison between analytical (denoted as exact in the figure) and numerical solutions: (a) and (b) are for the pulse type solution described in Eq. (23); (c) and (d) are for the wave type solution described in Eq. (24). The left panels used the standard transformed exponential discretization for a soil column in CLM4 (see Eq. 6.5 in Oleson et al., 2010). The right panels used a refined discretization by doubling the number of nodes in the transformed exponential grid. See text for details of the comparison.

This approach allowed us to partition the predicted soil surface \( CO_2 \) fluxes into contributions from these three sources. We then analyzed whether these three sources have distinct signals from the soil surface \( CO_2 \) effluxes and soil \( CO_2 \) concentrations measured in the field. Such an analysis would also be useful to benchmark the isotopic partitioning of \( CO_2 \) fluxes from different belowground respiration components, which is left for our future studies.

### 4 Results and discussion

#### 4.1 Evaluation against analytical solutions

Comparisons between numerical and analytical solutions indicate the 1-D transport code accurately (root mean square errors are less than 0.01 for all cases) represented tracer transport for both the pulse and wave boundary condition simulations using the CLM4 standard vertical discretization and time step (Fig. 4a and c). Refining the vertical resolution (i.e., halving the grid size in the transformed exponential coordinate system, see Eq. 6.5 in Oleson et al., 2010) indicated that numerical convergence slightly improved (Fig. 4b and d), but the improvement is small considering the extra computation and storage required. These results indicate the transport algorithm for CLM4-BeTR has good accuracy for these test cases. We conclude that the default CLM4 vertical grid structure and time-step (30 min) is sufficient to produce reasonable model simulations.
4.2 Single point evaluation at the Harvard Forest site

Simulated mean seasonal cycle of ecosystem respiration was generally in good agreement with the data derived from tower eddy flux measurements (Fig. 5). Starting from April (day 91), the model simulated larger ecosystem CO$_2$ respiration fluxes than observed, though predicted GPP (gross primary production) is close to the measurements (with a linear fitting $x = 0.88y - 0.8780$ (µmol CO$_2$ m$^{-2}$ s$^{-1}$), where $x$ represents simulated GPP, and $y$ represents the observed data; data not shown). The overestimation in ecosystem respiration could be from any of the predicted respiratory components, including above ground autotrophic respiration, root autotrophic respiration, and soil heterotrophic respiration.

We next integrated the predicted belowground CO$_2$ production (i.e., soil respiration, which equals heterotrophic respiration plus autotrophic root respiration) rate with the transport module in CLM4-BeTR to calculate soil-gas CO$_2$ concentrations (Fig. 6). The predicted soil CO$_2$ concentrations were generally higher than observed from April through June, in relatively good agreement with observations from July through September, and higher than observed from October through December. It is not clear whether the overestimation in soil CO$_2$ concentrations resulted from an overestimation of the CO$_2$ production rate in soil heterotrophic respiration or in root autotrophic respiration, or insufficient transport due to incorrect physical forcing, or even some combination that varied with time. However, analyses indicated that the simulated soil temperature was in good agreement with measurement at all four—observation depths (6, 10, 33, and 60 cm) where the soil air samples were taken (Fig. S1). The simulated soil moisture was higher than observed throughout most of the year (Fig. S2). Hence, according to the way that soil moisture affects tracer transport and organic matter decomposition (Andren and Paustian, 1987) in the model, a reasonable hypothesis is that (1) tracer transport calculations were forced by incorrect soil water dynamics and (2) the soil heterotrophic respiration was overestimated, given that oxygen and organic matter availability were never the limiting factor for soil heterotrophic respiration. Further, a mass budget analysis of the belowground CO$_2$ dynamics indicated that, at this site, the difference between annual surface efflux and belowground production of CO$_2$ is small, and loss through surface and subsurface runoff is less than 1% of the total CO$_2$ from soil respiration.

4.3 Partitioning surface CO$_2$ fluxes

We found the three predicted CO$_2$ sources (soil heterotrophic respiration, root respiration, and atmospheric CO$_2$ intrusion) differ distinctly in contributing to the overall soil surface CO$_2$ efflux (Fig. 7a). The atmospheric CO$_2$ intrusion (denoted by Air) contributed a negligible amount (being two orders of magnitude smaller than the other two sources), indicating, as expected, that the surface CO$_2$ efflux was dominated by belowground biogeochemical production. In this simulation, the CO$_2$ produced from soil heterotrophic respiration dominated the total surface efflux, particularly in the non-growing season, when autotrophic root respiration diminished due to reduced vegetation productivity. In addition, due to a tight coupling with soil physics, soil heterotrophic CO$_2$ production was more temporally variable than root autotrophic respiration. However, we are not sure if this behavior is close to what actually occurred in the field.
At the daily time step, small yet significant discrepancies existed between simulated surface CO$_2$ effluxes and soil respiration (Fig. 7b and c). However, more significant discrepancies were identified when the surface CO$_2$ effluxes and soil respiration were compared at the hourly time scale (Figs. 8a–d and S3). In the growing season (from 1 May to 31 October), we found hourly soil surface CO$_2$ effluxes were often different from the belowground CO$_2$ production rate (Fig. S3b). We found distinct differences between the surface CO$_2$ efflux $F_{\text{SR}}$ (µmol CO$_2$ m$^{-2}$ s$^{-1}$) and belowground soil respiration SR (µmol CO$_2$ m$^{-2}$ s$^{-1}$), mostly with the $F_{\text{SR}}$ higher than SR in the daytime and vice versa in the nighttime during the growing season (Fig. 8b–d). This diurnal variability in the difference between $F_{\text{SR}}$ and SR resulted in a slight asymmetry (statistically significant with $p < 0.01$) in the histogram of the relative differences (defined as $(F_{\text{SR}} - \text{SR}) / F_{\text{SR}} \times 100\%$) for the growing season (Figs. 8e and S4). The relative difference at the hourly scale could be as much as 20% during the growing season, and up to 80% during the winter, when freeze-thaw driven episodic emissions occurred (e.g., the peak emission on day 30 in Fig. S3a). When averaged over daily time steps, however, the differences between the surface CO$_2$ effluxes and belowground production were much smaller and showed a more symmetric distribution around the mean zero (Fig. 8e), supporting the finding that the temporal averaging to time scales larger than 24-h could suppress the strong small time step signals in the measured CO$_2$ surface efflux (Fig. 7). Nevertheless, the significant differences at the hourly time scale implied potential problems associated with the common approach used to infer GPP from eddy covariance NEE (net ecosystem exchange) measurements (Desai et al., 2008; Lasslop et al., 2010). These differences also challenge the assumption that below ground CO$_2$ production equals surface CO$_2$ efflux that has been long held in parameterizing the soil respiration model using field measured surface CO$_2$ efflux data.

Grouping the relative differences into a monthly time step showed there were seasonally systematic biases. In particular, the surface CO$_2$ effluxes tended to be smaller than belowground production during the thaw period, and vice versa during the freezing period (Fig. 8f). To better understand these seasonally dependent biases, we analyzed hourly time step model predictions for four different three-day periods: the end of January, early May, late July, and late October (Fig. 9). In the thaw season, CO$_2$ loss through surface and belowground drainage, as well as increased soil gas storage capacity, made the surface CO$_2$ efflux smaller than the
total belowground production rates. However, when temperatures were below freezing (days 28–31 and 300–303), the loss through drainage diminished and the soil gas storage capacity decreased, such that very strong episodic CO$_2$ emissions can occur during the short-term thaw event between two consecutive freezing events or at the start of the thaw season. Such episodic emissions can be three to four times two consecutive freezing events or at the start of the thaw season. Such episodic emissions can be three to four times higher than the CO$_2$ effluxes during the peak-growing season (Figs. S3a and 9a), and 20 or more times higher than the actual belowground CO$_2$ production rate. Field measurements are needed to assess whether these predictions are realistic, although similar signals have been observed for CH$_4$ fluxes in inundated soils in Sanjiang Plain, Northeast China (Song et al., 2012).

In accordance with the distinct temporal patterns of CO$_2$ production rates from soil heterotrophic respiration and autotrophic root respiration (Fig. 7), the resulting CO$_2$ concentrations from these two sources also showed distinct temporal patterns (Fig. 10). The CO$_2$ produced from soil heterotrophic respiration persisted at higher levels over a longer fraction of the year than CO$_2$ from root respiration. However, due to the physical transport of the CO$_2$ in the soil profile, we found that the location of high CO$_2$ concentrations usually differed from the CO$_2$ production hot spots. In addition, when an incorrect top boundary condition or a different root profile was used, the simulated surface CO$_2$ effluxes would not change significantly although the soil CO$_2$ concentrations would drastically change (results not shown). These finding indicate that field soil CO$_2$ concentration measurements can provide additional constraints on belowground biogeochemistry besides that provided from surface CO$_2$ efflux measurements.

5 Summary

In this study, we presented methods, testing, and an application of CLM4-BeTR, a general multi-phase reactive transport model integrated in CLM4. The model is designed to tightly couple depth-dependent biogeochemistry and physics, to use a hierarchy of biogeochemistry models with different structural complexities, and to readily couple with atmospheric chemistry and physics modules. The comparison with analytical solutions showed the transport calculations were accurate with the default CLM4 time-step and vertical grid structure. An evaluation of modeled surface CO$_2$ effluxes and soil CO$_2$ profiles indicates that the model was able to reasonably capture the seasonal dynamics of soil surface CO$_2$ effluxes and soil CO$_2$ concentrations, subject to the uncertainties associated with the measurements and model forcings. The component-wise CO$_2$ tracer transport experiment indicated that there are timescale-dependent differences between the surface CO$_2$ effluxes and the corresponding belowground CO$_2$ production rates. These results indicate that soil CO$_2$ concentration profile measurements provide additional information beyond soil surface CO$_2$ efflux measurements to constrain terrestrial biogeochemistry models. In future studies, we will present further developments associated with CLM4-BeTR, such as explicit carbon and nitrogen transport, isotope transport and microbial dynamics, that enable a comprehensive and mechanistically-based evaluation of atmosphere-biosphere interactions, involving both physical and chemical feedbacks.

Appendix A

Computing the diffusivities

Following the approach by Moldrup et al. (2003), the effective diffusivity for aqueous tracer is computed as

\[ D_w = D_w^* \theta \left( \frac{\theta}{\phi} \right)^{\kappa/3 - 1}. \]  \hspace{1cm} (A1)

The effective diffusivity for gaseous tracer is computed as

\[ D_g = D_g^* \left( \frac{\theta}{\phi} \right)^{3/\kappa}. \]  \hspace{1cm} (A2)

Here, \( \phi \) (m$^3$ m$^{-3}$) is the effective soil porosity, being equal to the soil porosity minus the space occupied by ice. \( \kappa \) (unitless) is the shape parameter for the Clapp–Hornberger parameterization (Clapp and Hornberg, 1978). \( D_w^* \) is the aqueous tracer diffusivity in liquid water, and \( D_g^* \) is the gaseous tracer diffusivity in air.
Appendix B

Computing the weighted leaf internal gas concentration

The flux (positive upward) over the sunlit leaf is

$$F_{\text{sun}} = -r_{\text{sun}}^{-1}(C_{i,\text{sun}} - C_r), \quad (B1)$$

and the flux over the shaded leaf is

$$F_{\text{sha}} = -r_{\text{sha}}^{-1}(C_{i,\text{sha}} - C_r), \quad (B2)$$

where the sunlit ($r_{\text{sun}}$) and shaded ($r_{\text{sha}}$) resistance (s m$^{-1}$) are functions of leaf (stem) area index and leaf boundary layer resistance (see Sect. 5.3 in Oleson et al., 2010).

Then the total flux over the canopy is

$$F_{\text{veg}} = F_{\text{sun}} + F_{\text{sha}}$$

$$= -\left(r_{\text{sun}}^{-1} + r_{\text{sha}}^{-1}\right)\left(\frac{r_{\text{sun}}^{-1}C_{i,\text{sun}} + r_{\text{sha}}^{-1}C_{i,\text{sha}}}{r_{\text{sun}}^{-1} + r_{\text{sha}}^{-1}} - C_r\right), \quad (B3)$$

which gives the weighted leaf internal tracer concentration as

$$C_{i,v} = \frac{r_{\text{sun}}^{-1}C_{i,\text{sun}} + r_{\text{sha}}^{-1}C_{i,\text{sha}}}{r_{\text{sun}}^{-1} + r_{\text{sha}}^{-1}}. \quad (B4)$$

From Eq. (B3), the weighted stomatal resistance $r_{s,v}$ (s m$^{-1}$) is found as

$$r_{s,v} = \left(\frac{1}{r_{\text{sun}}} + \frac{1}{r_{\text{sha}}}\right)^{-1}. \quad (B5)$$

Supplementary material related to this article is available online at: http://www.geosci-model-dev.net/6/127/2013/gmd-6-127-2013-supplement.pdf.

Acknowledgements. This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. The authors appreciate Kathleen Savage and Eric Davidson at the Woods Hole Research Center for providing the soil CO$_2$ profile data and soil moisture and temperature data at the Harvard Forest site.

Edited by: S. Arndt

References


Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brockin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cycle feedback analysis: Results from the C(4)MIP model intercomparison, J. Climate, 19, 3337–3353, 2006.


