Sensitivities and uncertainties of modeled ground temperatures in mountain environments

S. Gubler, S. Endrizzi, S. Gruber, and R. S. Purves
Department of Geography, University of Zurich, Zurich, Switzerland

Correspondence to: S. Gubler (stefanie.gubler@geo.uzh.ch)

Received: 19 December 2012 – Published in Geosci. Model Dev. Discuss.: 6 February 2013
Revised: 27 June 2013 – Accepted: 12 July 2013 – Published: 23 August 2013

Abstract. Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain.

We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT) that cannot be neglected (more than 1 °C for several discretization parameters). We show that the temporal resolution should be at least 1 h to ensure errors less than 0.2 °C in modeled MAGT, and the uppermost ground layer should at most be 20 mm thick.

Within the topographic setting, the total parametric output uncertainties expressed as the length of the 95% uncertainty interval of the Monte Carlo simulations range from 0.5 to 1.5 °C for clay and silt, and ranges from 0.5 to around 2.4 °C for peat, sand, gravel and rock. These uncertainties are comparable to the variability of ground surface temperatures measured within 10 m × 10 m grids in Switzerland. The increased uncertainties for sand, peat and gravel are largely due to their sensitivity to the hydraulic conductivity.

1 Introduction

Models are important tools for investigating natural processes and providing scenarios relating to future environments. Physically based or empirical models can predict spatial or temporal variation of measured attributes and related phenomena of interest, and derived products may serve as a basis for political or economical decisions. Since every model is an abstraction and simplification of reality, and since therefore model outputs are strongly dependent on the modeler’s perception of the system, any model must in a first step be evaluated for its fit to an intended purpose (Ryklick, 1996). Model evaluation forms an important part of the development process (e.g., Beven, 1993; Gupta et al., 2005). It aims at (a) determining the degree of accordance of a model output with the respective measured quantity (e.g., Ryklick, 1996; Beck et al., 1997; Anderson and Bates, 2001;
Stow et al., 2009), (b) quantifying the related model uncertainty (e.g., Beck, 1987; Beven and Binley, 1992; Beven, 1993; Davis and Keller, 1997; Crosetto and Tarantola, 2001), (c) identifying parameters and input variables that account for the largest parts of this uncertainty (e.g., Cukier et al., 1977; Sobol, 1993; Saltelli et al., 2004, 2008) and (d) eventually calibrating the model to local conditions (e.g., Beven and Binley, 1992; Chen et al., 2000; Gupta et al., 2005).

Uncertainties and errors come from processes that are not represented in the model, unknown physical properties, errors in input data, numerical errors and the modeler’s perception when selecting the processes to be represented, among others (Gupta et al., 2005). Uncertainty can be defined as limits in modeling due to lack of knowledge (e.g., unknown physical properties), while errors may arise from numerical approximations, for example (AIAA, 1998).

Models are often applied to make predictions for large spatial areas. However, model evaluation is typically restricted to only one or, in the best case, a few evaluation points due to lack of observed data for validation. In turn, this implicitly assumes that validation at a single point suffices to inform on decisions about model performance in different environmental conditions because the model is physically based (and thus representativity at one point implies representativity over a domain). However, the implications of this assumption when modeling phenomena in highly variable terrain or over long distances has been the subject of limited research. This paper is focused on a sensitivity and uncertainty analysis of a physically based mountain permafrost model to serve as a case study for examining the role of environmental variability in model evaluation.

The validity of a model cannot be determined based only on sensitivity and uncertainty analyses, since the model outputs are not compared to measured values. However, model sensitivities and uncertainties can be analyzed independently of their ground truth measurements. Sensitivity and uncertainty analyses are one valuable way of exploring the potential influence of different environmental settings on model evaluation, without requiring spatially distributed measurements. Since the processes determining the occurrence and characteristics of mountain permafrost are highly complex and nonlinear, a mountain permafrost model is a suitable tool to investigate the variability of model sensitivities and uncertainties in a highly variable environment.

The focus of this study lies on the variability of sensitivities and uncertainties for different topographic and other environmental conditions (Table 1). Here, sensitivity analysis quantifies the variation of the modeled output due to variation in single model parameters, while an uncertainty analysis quantifies the total parametric model output uncertainty due to errors or uncertainties in model parameters. A preliminary parameter calibration (i.e., a minimization of the differences between the model outputs and given values) is performed on selected parameters that influence snow duration most strongly. The object of investigation in this study is an energy- and mass-balance model with a primary focus on exploring variables and processes relating to permafrost, i.e., those influencing ground temperatures (GTs). GTs are interesting because they are influenced by highly nonlinear environmental processes such as the energy balance at the Earth’s surface, snow cover distribution and snow melting, as well as heat conduction in the ground, which is determined by the thermal properties of the ground constituents and its water content and phase state (e.g., Williams and Smith, 1989). In mountain regions, GTs are strongly coupled to air temperature in summer, and are influenced by solar radiation, snow cover in winter and the ground material (e.g., Haeberli, 1973; Hoelzle, 1996; Keller and Gubler, 1993; Luetschg et al., 2008; Gruber and Hoelzle, 2008). Within a mountainous environment, these variables and processes vary within short distances (e.g., Hoelzle et al., 2003; Gubler et al., 2011), which makes interpolation of model outputs difficult. Similarly, results obtained from model evaluation cannot simply be transferred to other locations. To summarize, the main goals of this study are as follows: (a) to examine the influence of environmental variability on model sensitivity and uncertainty, and discuss the importance of representative model evaluation; (b) to quantify the sensitivity of mean annual ground temperature (MAGT) due to errors in discretization, numerical and model specific parameters and uncertainties in physical parameters; and (c) to discuss the influence of environmental variability on a physically based energy- and mass-balance model.

Fig. 1. Model uncertainties and errors have diverse sources (red) such as unknown parameters, errors in input data, numerical errors due to discretization, etc. Uncertainty and sensitivity studies investigate the effect of these possible sources of errors on model outputs (adapted from Gupta et al., 2005). Observed and modeled responses as well as model sensitivities are subject to strong environmental variation.
2 Model and data description

2.1 The energy- and mass-balance model GEOtop

GEOtop is a physically based model originally developed for hydrological research. It couples the ground heat and water budgets, represents the energy exchange with the atmosphere, has a multilayer snow pack and represents the water and energy budget of the snow cover (Bertoldi et al., 2006; Rigon et al., 2006; Endrizzi, 2007; Dall’Amico, 2010). GEOtop simulates the temporal evolution of the snow depth and its effect on ground temperature. It solves the heat conduction equation in one dimension and the Richard’s equation for water transport in one or three dimensions describing water infiltration in the ground as well as freezing and thawing processes. GEOtop is therefore a suitable tool to model permafrost relevant variables such as snow and ground temperatures (Fig. 2). It can be applied in high-mountain regions and allows topographic and other environmental variability to be accounted for. This study is performed using the GEOtop version number 1.225-9.

2.2 Input and validation measurements

Input data consist of measured air temperature, wind velocity and direction, relative humidity, global radiation and precipitation recorded by the MeteoSwiss meteorological stations. The experiment is run at Piz Corvatsch, Upper Engadine, Switzerland, where a meteorological station of MeteoSwiss is located at 3315 m a.s.l. A preliminary model analysis is performed at the 40 locations of ground surface temperature measurements around Piz Corvatsch (Gubler et al., 2011). The two main target variables are the mean annual ground surface temperature (MAGST) and the melt-out date of the snow (MD) (Schmid et al., 2012). The study was performed for two years of data, i.e., from summer 2009 to summer 2011.

2.3 Model parameters

2.3.1 Numerical parameters

In GEOtop, ground discretization is given as the thickness \(dz \) of each ground layer. Close to the surface, the ground is resolved in finer detail due to the greater temperature gradients. To reduce the number of degrees of freedom, the thickness of the ground layers is parameterized as an exponential function, describing the ground layer \(i \) as

\[
dz_i = dz_{\text{min}} \cdot (1 + b)^{i-1},
\]

where \(dz_{\text{min}} \) is the thickness of the first layer, \(b \) is the growth rate and \(i \) is the layer index, being one at the ground surface and increasing downwards. In addition, the maximal depth \(z_{\text{max}} \) of the modeled ground must be set as a parameter.

Snow resolution is higher close to the snow surface (snow–atmosphere interface) and to the ground (snow–ground interface). Snow portions at the top (referred to as the top region) and at the bottom (bottom region) are defined that are discretized with snow layers that never exceed a specified snow water equivalent (\(\text{swe}_m \)). The top and bottom regions are defined by their maximum snow water equivalent content, respectively given by \(n_t \cdot \text{swe}_m \) and \(n_b \cdot \text{swe}_m \), where \(n_t \) and \(n_b \) are integers. However, the portion of the snow pack not included in the top and bottom regions constitutes the middle region, which is discretized with a maximum number \(n_m \) of layers with minimum snow water equivalent content equal to \(\text{swe}_m \) and no maximum. The layering algorithm prevents the formation of significant snow water equivalent differences across the layers when the value \(\text{swe}_m \) is exceeded.

The heat and Richard’s equations are solved with the Newton–Raphson method (Kelley, 2003). Significant numerical parameters are the time step \(dt \) of numerical integration of the equations and the residual tolerance at which the iterations are terminated. The sensitivity of the GEOtop model to both these parameters are also quantified in this study. The time step has been made to vary in the range from 7.5 min to 4 h. The higher the time step and residual tolerance are, the longer the computing time is. The optimal parameters for the simulation are the highest time step, and residual tolerance for which a decrement of their value does not result in a significant numerical solution difference.

2.3.2 Model-specific parameters

An initial condition of the state variables, namely temperature and total (= ice + liquid water) soil moisture initial profiles, must be assigned to run the model. Since there is always a certain degree of arbitrariness in this, the simulations...
are then run for a long time so that they lose memory of the initial values and will assume values in equilibrium with the meteorological forcings and the ground properties. The ground column in the model is 10 m deep, and is initialized by repeatedly modeling GT down to 1 m (40 yr), then using the modeled GTs as initial condition to repeatedly simulate GT down to 5 m (40 yr) and finally simulating GTs down to 10 m depth. Preliminary analyses have shown that this procedure produces stable initial conditions of the ground. To test possibly different responses that may take place if the initial condition is given by unfrozen and frozen ground, a sensitivity study with negative (−1 °C) and positive (+1 °C) initial ground temperatures is performed. The initial total soil moisture profile is obtained from the retention curve after assigning a hydrostatic water pressure profile, and then the total soil moisture in ice and liquid water is split according to ground temperature and the freezing soil characteristic curve (e.g., Dall’Amico, 2010).

Although this study deals with one-dimensional simulations, it is possible to represent lateral water drainage between the surface and a depth referred to as z_f, while below this depth the ground can be filled with water until it is saturated. Depending on the interests of the modeler, the water balance can be turned off if no information on the ground hydraulic properties are available in order to save computation time or to study the influence of water balance on model outputs.

The longwave downward radiation (LDR) parameterizations implemented in GEOtop are based on the Stefan–Boltzmann law:

\[\text{LWR}_\text{in} = \epsilon_{\text{atm}} \cdot \sigma_{SB} \cdot T_{\text{atm}}^4, \]

where \(\sigma_{SB} = 5.67 \times 10^{-8} \text{W m}^{-2} \text{K}^{-4} \) denotes the Stefan–Boltzmann constant, \(\epsilon_{\text{atm}} \) the bulk emissivity and \(T_{\text{atm}} \) the effective temperature of the overlying atmosphere. In practice, \(T_{\text{atm}} \) is replaced by the temperature at screen-level height \(T \), and the atmospheric emissivity is parameterized as a function of air temperature and/or vapor pressure. Diverse LDR parameterizations can be found in the literature (Brutsaert, 1975; Idso, 1981; Konzelmann et al., 1994; Prata, 1996, among others). GEOtop includes a switch to select one out of nine parameterizations. Gubler et al. (2012) calibrated these parameterizations to measured longwave radiation in Switzerland. The sensitivity on the different LDR parameterizations, as well as on the calibrated Konzelmann et al. (1994) parameterization, is tested.

The turbulent fluxes of sensible and latent heat are calculated using the Monin–Obukhov similarity theory (Obukhov, 1946; Monin and Obukhov, 1954), which represents the effect of buoyancy with corrections to the logarithm profile of wind speed, valid only in a neutral atmosphere. However, the theory only determines the functional dependence of the corrections. Their mathematical formulation has to be found empirically. For this reason, in the present study the possibility to represent the turbulent fluxes assuming a neutral atmosphere is also considered. This becomes very important when the atmosphere is stable, because in this case the Monin–Obukhov corrections may improperly suppress turbulence and, as a result, the surface may be decoupled from the atmosphere, causing significant errors. If the wind speed is very small, such decoupling may also occur. Therefore, a minimum wind speed \((V_{\text{min}}) \) has been added as a parameter. A minimum relative humidity (RH_{min}) has also been added to prevent unrealistic turbulent fluxes. Temperature thresholds for rain \(T_{r,0} \) and snow \(T_{s,0} \) determine the temperature above which all precipitation is rain and below which all precipitation is snow. Between the two thresholds, the amount of precipitation that is rain or snow is interpolated linearly. They are set from 0 to 4 °C for rain, and −3 to 0 °C for snow (Kienzle, 2008).

2.3.3 Physical parameters

The parameters considered for ground are its aerodynamical roughness, ground albedo and emissivity, as well as its hydraulic properties presented in Sect. 2.4.2. The ground roughness influences the turbulent fluxes, and ranges from few millimeters up to half a meter or more depending on terrain obstacles (Wieringa, 1993). The albedo of a dry ground surface \(\alpha_g \cdot \text{dry} \) is assumed to range from 0.1 to 0.4, values that are typically found in the literature (e.g., Angström, 1925; Tetzlaff, 1983; Ineichen et al., 1990; Scharmer and Greif, 2000; Markvart and Cañber, 2003; Polo et al., 2012), with an average of 0.2. The reflection of wet ground \(\alpha_g \cdot \text{wet} \) is smaller than for dry ground (Angström, 1925), modeled as

\[\alpha_g \cdot \text{wet} = \alpha_g \cdot \text{dry} \cdot f_{\alpha g \cdot \text{wet}}, \]

where \(0.4 \leq f_{\alpha g \cdot \text{wet}} \leq 1 \). Emissivity of the different ground types is assumed between 0.8 and 0.99 with an average of 0.96 (e.g., Sutherland, 1986; Ogawa and Schmugge, 2004; Jin and Shunlin, 2006). The heat flux at the bottom of the ground profile determines the lower boundary condition of the heat conduction. The deep ground heat flux is 0.07 W m\(^{-2}\) (Medici and Rybach, 1995). Due to geometrical effects in high-mountain regions, the density of the ground heat flux in complex topographies varies (Kohl, 1999; Nötli et al., 2007), and is hence assumed to have an average value of 0.05.

Diverse parameters concerning snow such as the snow reflectance, its emissivity, roughness, viscosity and the snow compaction rate can be set in GEOtop, determining the outgoing longwave radiation, the turbulent fluxes and the snow densification. They influence snow melt and the duration of the snow cover in spring. For shallow snow packs, snow albedo decreases since a significant portion of incoming shortwave radiation is actually absorbed by the ground surface (Tarboton and Luce, 1996). In GEOtop, this is represented by the albedo extinction parameter \(c_{\alpha} \). If the snow
Table 1. Environmental attributes determining the locations for which the sensitivity and uncertainty analyses are performed. The sky view factor (SVF) is a function of slope. For each combination of attributes, a separate sensitivity and uncertainty analysis is performed, resulting in a total of 200 simulation locations per ground type. In total, 1200 sensitivity and uncertainty analyses were performed.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Unit</th>
<th>Min.</th>
<th>Max.</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>m</td>
<td>500</td>
<td>4000</td>
<td>500</td>
</tr>
<tr>
<td>Aspect</td>
<td>deg.</td>
<td>0</td>
<td>360</td>
<td>10</td>
</tr>
<tr>
<td>Slope</td>
<td>deg.</td>
<td>0</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>SVF</td>
<td></td>
<td>0.93</td>
<td>1</td>
<td>e.g., Table 2</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td>1</td>
<td>6</td>
<td>e.g., Table 2</td>
</tr>
</tbody>
</table>

Fig. 3. The height of the meteorological station at Piz Corvatsch is assumed uncertain, ranging from 0.5 to 16 m. Within mountain topography, the actual height in relation with the surroundings at the top of a mountain cannot be accurately determined. In the figure, the meteorological station is just above the “tsch” of “Corvatsch”.

2.4.2 Ground types
Different ground types and ground surface covers influence the ground thermal regime substantially. Liquid water influences the thermal conductivity of the ground as well as the latent heat transfer during freezing and thawing of a specific ground layer (Williams and Smith, 1989). The study was performed for six different ground types: clay, sand, silt, peat, gravel and rock. For each of these ground types, typical values for the residual water content \(\theta_r \), the saturated water content \(\theta_s \), the parameters \(n_{\text{SG}} \) and \(\alpha_{SG} \) determining the shape of the water retention curve parameterized according to van Genuchten (1980) and the saturated hydraulic conductivity \(K_h \) are determined (Table 2). The lateral hydraulic conductivity is assumed to be the same as the normal hydraulic conductivity. The thermal conductivity \(K_T \) is set to 2.5 W m\(^{-1}\)K\(^{-1}\) and the thermal capacity \(C \) of the mineral particles to 2.25 \(\times \) 10\(^6\) J m\(^{-3}\)K\(^{-1}\) for the attributes that are assumed important when modeling mountain permafrost.
mineral particles (e.g., Cermák and Rybach, 1982; Wegmann et al., 1998; Šafanda, 1999). Ground is defined here as the volume below Earth’s surface for which temperature is studied. Coarse blocks such as typically found on rock glaciers are important to model permafrost in the Alps. In this setting, we parameterize them with the hydrologic conductivity of gravel and a high porosity. This allows for a free drainage of the pore space, and the corresponding air content is accounted for in the calculation of ground thermal conductivity that constitutes one element of the importance of coarse blocks for permafrost (Gruber and Hoelzle, 2008). The advection of air in blocky surfaces, which is a complex problem that we are not yet in the position to address, is not included in the model.

The parameter values for silt, sand and clay are taken from Twarakavi et al. (2010, Table 2). For peat, the parameter values come from Carey et al. (2007) and Quinton et al. (2008). Residual and saturated water content for gravel is assumed to be similar to sand. The van Genuchten parameters and the hydraulic conductivity for gravel are approximated from Maier et al. (2009). For rock, they are assumed to be the same as for clay, and the hydraulic conductivity, and \(\theta_r \) and \(\theta_s \) are assumed to be very small. Measurements of the van Genuchten parameters for rock were not found in the literature.

2.5 Target variable

Ground temperatures are linearly interpolated between the simulation nodes that represent layers in the numerical scheme. Thereby, the modeled MAGT are compared at the same depths. The annual mean, minimum and maximum values at 10 cm, 1 m, 5 m and 10 m depth are calculated.

Table 2. Parameters of the different ground types.

In the sensitivity analysis, the hydraulic parameters are assumed to change by ±20 % for \(\theta_{sat} \), ±10 % for \(\theta_{res} \), ±50 % for \(n_{vG} \) and ±25 % for \(\alpha_{vG} \), and goes from 0.01 to 100 times the original value for \(K_h \). The thermal conductivity changes by 50 % and the heat capacity changes by 20 % as shown in Table 3. The values are modified by the respective factors presented in Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Clay</th>
<th>Silt</th>
<th>Sand</th>
<th>Peat</th>
<th>Gravel</th>
<th>Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual water content</td>
<td>(\theta_r)</td>
<td></td>
<td>0.072</td>
<td>0.057</td>
<td>0.055</td>
<td>0.2</td>
<td>0.055</td>
<td>0.002</td>
</tr>
<tr>
<td>Saturated water content</td>
<td>(\theta_s)</td>
<td></td>
<td>0.475</td>
<td>0.487</td>
<td>0.374</td>
<td>0.85</td>
<td>0.374</td>
<td>0.05</td>
</tr>
<tr>
<td>van Genuchten (\alpha)</td>
<td>(\alpha_{vG})</td>
<td>mm(^{-1})</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.03</td>
<td>0.1</td>
<td>0.001</td>
</tr>
<tr>
<td>van Genuchten (n)</td>
<td>(n_{vG})</td>
<td></td>
<td>1.4</td>
<td>1.6</td>
<td>3.2</td>
<td>1.8</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>(K_h)</td>
<td>mm s(^{-1})</td>
<td>0.0019</td>
<td>0.0051</td>
<td>0.0825</td>
<td>0.3</td>
<td>10</td>
<td>0.000001</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>(K_T)</td>
<td>W m(^{-1}) K(^{-1})</td>
<td>2.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thermal capacity</td>
<td>(C)</td>
<td>J m(^{-3}) K(^{-1})</td>
<td>2.25 \times 10(^6)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

(Sect. 2.4.1). Then, a subset of sensitive physical parameters was selected to quantify the total parametric output uncertainty of GEOtop (Sect. 3.3).

3.1 Preliminary analysis

The parameters that predominantly influence the duration of snow cover were calibrated in a preliminary analysis, since snow exerts great influence on ground temperatures through insulation (Zhang, 2005; Goodrich, 1982). The error of simulated melt-out day (MD) is compared to MD observed at 39 locations around Piz Corvatsch (Gubler et al., 2011; Schmid et al., 2012). MD is simulated for diverse parameter sets obtained by globally varying the most important parameters that influence MD. The simulations are calibrated with the observations to obtain parameter values that minimize the difference between model outputs and observations.

3.2 Sensitivity analysis

A model can be regarded as a black box represented by a function \(f(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_m) \), where \((x_1, x_2, \ldots, x_n) \) are the model parameters and \((y_1, y_2, \ldots, y_m) \) are the model outputs. To evaluate GEOtop, a sensitivity analysis on 52 individual parameters is performed to (a) quantify the influence of each parameter on the output variables of interest and (b) to determine the most important physical parameters for the subsequent uncertainty analysis. The sensitivity of a parameter \(x_j \) is determined by keeping all parameters \(x_i, i \neq j \) fixed at their baseline value \(X_{j0} = (x_{10}, x_{20}, \ldots, x_{j-10}, x_{j+10}, \ldots, x_{n0}) \), and varying \(x_j \) within values that are physically plausible. The ranges of the parameters are determined based on review of the literature and/or expert opinion. However, it must be kept in mind that, even though intended to be as objective as possible, the selection of a parameter range has a subjective part that influences the results and conclusions that are obtained from the analysis. The variation of the model outputs \(y_k, k = 1, \ldots, m \) is evaluated to quantify the local sensitivities \(x_{j,k} \) that are defined here as the range of the 95 % of the simulated outputs.

Geosci. Model Dev., 6, 1319–1336, 2013

www.geosci-model-dev.net/6/1319/2013/
Local sensitivities are obtained when each parameter is varied separately and all others are kept fixed. This procedure contrasts to global sensitivities, where all parameters are changed simultaneously (e.g., Saltelli et al., 2004, 2008).

The parameters are categorized into (a) very sensitive parameters, (b) sensitive parameters and (c) nonsensitive parameters. Category (a) includes all parameters that are tuned in a preliminary analysis (Sect. 3.1). The second category includes all parameters having non-negligible influence to the model outputs. All physical parameters changing MAGT by at least 0.5 °C in the sensitivity analysis are included in the uncertainty analysis.

3.3 Uncertainty analysis

A prior distribution is assigned to each of the selected physical parameters. If a parameter has only positive values, it is assumed to be log-normally distributed, otherwise it follows a normal distribution. All parameters are assumed independent from each other. Since the study setting is synthetic, spatial autocorrelation of the parameters are not taken into account. The location parameter is the average of the parameter values determined for the local sensitivity analysis (e.g., Table 3), and the standard deviation is chosen such that the range encloses 95% of the values for a normally distributed parameter. If a parameter is log-normally distributed (e.g., \(x \sim \mathcal{LN}() \)), the expected value \(E[X] \) is the baseline value, and the variance \(\text{Var}[X] \) is chosen appropriately representing the variability of the parameter. The statistical parameters of the log-normal distribution are

\[
\sigma = \log \left(\frac{\text{Var}[X]}{E[X]} + 1 \right),
\]

\[
\mu = \log(E[X]) - \frac{\sigma^2}{2}.
\]

Each parameter is sampled according to its prior distribution, and a GEotop simulation is performed for each parameter set. In total, 1500 model simulations were performed to ensure convergence of the output probability distribution (Fig. 10). The results are depicted as relative frequency histograms to evaluate the total model output uncertainty, and are quantified as the length of the 95% uncertainty interval of the simulations.

3.4 Model simulations

The sensitivity and uncertainty analyses were performed systematically for different ground types within a setting representing the topographic variability encountered in mountain regions (Sect. 2.4). In total, 1200 locations were simulated. The sensitivity analysis required 256 simulations, and the uncertainty analysis a total of 1500 simulations at each location. In total, more than 2 million GEotop simulations were performed. The simulations are visually analyzed using small-multiple plots (Tuft, 1983, 1990) (e.g., Fig. 7), and are summarized at least one ground in box plots for the different locations and ground types.

4 Results

4.1 Preliminary analysis

A preliminary analysis was conducted to extract reasonable values of the parameters that most considerably influence snow duration (i.e., the melt-out day (MD)). The temperature and precipitation lapse rates and the snow correction factor were calibrated using MD derived from ground surface temperature measurements around Piz Corvatsch (Gubler et al., 2011; Schmid et al., 2012). Due to a compensating effect, different parameter combinations lead to similar results (Beven and Freer, 2000) (Fig. 4). We chose to set the temperature lapse rate to its most commonly used value of \(-6.5 °C/km\), resulting in an optimal precipitation lapse rate of \(0.2 km^{-1}\) and a snow correction factor of 2 (Fig. 4). That results in an average MD error of zero days with a root-mean-squared error of less than 20 days for both study years 2010 and 2011. Precipitation lapse rate in mountain areas are normally negative accounting for greater snow accumulation in high-elevation areas (e.g., Barringer, 1989). Downward transportation of snow by avalanches or wind in the study area, processes that are not represented in GEotop, may be the reason for the positive precipitation lapse rate. The sensitivity to different LDR parameterizations was reduced using the calibration performed by Gubler et al. (2012).
Table 3. Parameters selected for the sensitivity study. The minimum and the maximum indicate the range from which the parameters are sampled, and base indicates the standard choice used in, e.g., local sensitivity studies. The columns below "Uncertainty" indicate the properties of the prior distributions of the parameters considered in the uncertainty analysis. The values of the two LDR parameters (Konzelmann et al., 1994) change between 0.484 and 0.43, and 5.7 and 8 (Gubler et al., 2012).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Base</th>
<th>Sensitivity Min.</th>
<th>Sensitivity Max.</th>
<th>Distr.</th>
<th>Uncertainty Par1</th>
<th>Par2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of first ground layer</td>
<td>$d_{z_{\text{min}}}$</td>
<td>mm</td>
<td>20</td>
<td>5</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate ground depth</td>
<td>b</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal ground depth</td>
<td>z_{max}</td>
<td>m</td>
<td>10</td>
<td>1.25</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of top snow layers</td>
<td>n_t</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of bottom snow layers</td>
<td>n_b</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of snow layers in middle</td>
<td>n_m</td>
<td>4</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical SWE</td>
<td>s_{wet}</td>
<td>mm</td>
<td>10</td>
<td>1.25</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time discretization</td>
<td>dt</td>
<td>h</td>
<td>1</td>
<td>0.125</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richard’s tolerance</td>
<td>tol_R</td>
<td>mm</td>
<td>10^{-4}</td>
<td>10^{-8}</td>
<td>10^{-4}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat equation tolerance</td>
<td>tol_Q</td>
<td>J m$^{-2}$</td>
<td>10^{-4}</td>
<td>10^{-8}</td>
<td>10^{-4}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Base</th>
<th>Sensitivity Min.</th>
<th>Sensitivity Max.</th>
<th>Distr.</th>
<th>Uncertainty Par1</th>
<th>Par2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal wind velocity</td>
<td>V_{min}</td>
<td>m s$^{-1}$</td>
<td>0.5</td>
<td>0.01</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal relative humidity</td>
<td>RH_{min}</td>
<td>%</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDR calibration</td>
<td>$\text{LDR}_{\text{in,K}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monin–Obukhov param.</td>
<td>MO</td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water balance</td>
<td>WB</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Base</th>
<th>Sensitivity Min.</th>
<th>Sensitivity Max.</th>
<th>Distr.</th>
<th>Uncertainty Par1</th>
<th>Par2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial ground temperature</td>
<td>T_i</td>
<td>°C</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth above which water drains</td>
<td>z_f</td>
<td>m</td>
<td>10</td>
<td>0.01</td>
<td>10</td>
<td>Unif</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Extinction parameter snow albedo</td>
<td>c_{r1}</td>
<td>mm</td>
<td>10</td>
<td>0</td>
<td>200</td>
<td>Log-N</td>
<td>1.71</td>
<td>1.09</td>
</tr>
<tr>
<td>Ground roughness</td>
<td>r_g</td>
<td>mm</td>
<td>10</td>
<td>0.01</td>
<td>100</td>
<td>Log-N</td>
<td>1.96</td>
<td>0.83</td>
</tr>
<tr>
<td>Dry ground albedo</td>
<td>$\text{a}_{\text{g,dr}}$</td>
<td>%</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>Norm</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>Divisor wet ground albedo</td>
<td>$\text{f}_{\text{w,ew}}$</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2.5</td>
<td>Norm</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>Ground emissivity</td>
<td>ε_g</td>
<td></td>
<td>0.96</td>
<td>0.81</td>
<td>0.99</td>
<td>Norm</td>
<td>0.93</td>
<td>0.02</td>
</tr>
<tr>
<td>Ground heat flux</td>
<td>\dot{Q}_g</td>
<td>W m$^{-2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow roughness</td>
<td>r_s</td>
<td>mm</td>
<td>0.1</td>
<td>0.01</td>
<td>10</td>
<td>Log-N</td>
<td>−2.64</td>
<td>0.83</td>
</tr>
<tr>
<td>Fresh snow albedo (vis)</td>
<td>$\text{a}_{\text{s,vis}}$</td>
<td></td>
<td>0.96</td>
<td>0.8</td>
<td>0.96</td>
<td>Norm</td>
<td>0.93</td>
<td>0.02</td>
</tr>
<tr>
<td>Fresh snow albedo (nir)</td>
<td>$\text{a}_{\text{s,NIR}}$</td>
<td></td>
<td>0.65</td>
<td>0.6</td>
<td>0.7</td>
<td>Norm</td>
<td>0.65</td>
<td>0.02</td>
</tr>
<tr>
<td>Snow emissivity</td>
<td>ε_s</td>
<td></td>
<td>0.98</td>
<td>0.96</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow viscosity</td>
<td>ν_s</td>
<td>N m$^{-2}$</td>
<td>10^6</td>
<td>10^6</td>
<td>8×10^6</td>
<td>Norm</td>
<td>4×10^6</td>
<td>2×10^6</td>
</tr>
<tr>
<td>Ground-snow roughness threshold</td>
<td>c_{r1}</td>
<td>mm</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irreducible water saturation snow</td>
<td>$s_{\text{w,irr}}$</td>
<td></td>
<td>0.02</td>
<td>0.005</td>
<td>0.08</td>
<td>Log-N</td>
<td>−4.02</td>
<td>0.47</td>
</tr>
<tr>
<td>Snow density cutoff</td>
<td>$d_{\text{s,cut}}$</td>
<td>kg m$^{-3}$</td>
<td>100</td>
<td>75</td>
<td>175</td>
<td>Log-N</td>
<td>4.58</td>
<td>0.2</td>
</tr>
<tr>
<td>Dry snow deformation rate</td>
<td>$\text{d}_{\text{s,dr}}$</td>
<td>%</td>
<td>1</td>
<td>0.75</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet snow deformation rate</td>
<td>$\text{d}_{\text{s,dr}}$</td>
<td>%</td>
<td>1.5</td>
<td>1.25</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature threshold rain</td>
<td>$T_{\text{r,0}}$</td>
<td>°C</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>Norm</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Temperature threshold snow</td>
<td>$T_{\text{s,0}}$</td>
<td>°C</td>
<td>−3</td>
<td>0</td>
<td>0</td>
<td>Norm</td>
<td>−1.75</td>
<td>0.5</td>
</tr>
<tr>
<td>Ozone</td>
<td>O_3</td>
<td>mm</td>
<td>0.314</td>
<td>0.238</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ångström α</td>
<td>α_1</td>
<td></td>
<td>1.38</td>
<td>0.46</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ångström β</td>
<td>β_1</td>
<td></td>
<td>0.039</td>
<td>0.010</td>
<td>0.139</td>
<td>Log-N</td>
<td>−3.73</td>
<td>0.99</td>
</tr>
<tr>
<td>Albedo to determine SDR</td>
<td>α_c</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual water content (F)</td>
<td>$\text{f}_{\text{b,rr}}$</td>
<td></td>
<td>1</td>
<td>0.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated water content (F)</td>
<td>$\text{f}_{\text{w,s}}$</td>
<td></td>
<td>1</td>
<td>0.9</td>
<td>1.1</td>
<td>Norm</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>van Genuchten parameter α (F)</td>
<td>$\text{f}_{\text{a,G}}$</td>
<td></td>
<td>1</td>
<td>0.75</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Genuchten parameter n (F)</td>
<td>$\text{f}_{\text{n,G}}$</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>Norm</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>Hydraulic conductivity (F)</td>
<td>k_F</td>
<td></td>
<td>1</td>
<td>0.01</td>
<td>100</td>
<td>Norm</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Thermal capacity (F)</td>
<td>f_C</td>
<td></td>
<td>1</td>
<td>0.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (F)</td>
<td>f_T</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>Norm</td>
<td>1</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Unit</th>
<th>Base</th>
<th>Sensitivity Min.</th>
<th>Sensitivity Max.</th>
<th>Distr.</th>
<th>Uncertainty Par1</th>
<th>Par2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature lapse rate</td>
<td>Γ_T</td>
<td>°C km$^{-1}$</td>
<td>6.5</td>
<td>5.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dew point temperature lapse rate</td>
<td>Γ_{DT}</td>
<td>°C km$^{-1}$</td>
<td>2.5</td>
<td>1.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation lapse rate</td>
<td>Γ_P</td>
<td>km$^{-1}$</td>
<td>0.2</td>
<td>−0.1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correction factor for precip.</td>
<td>γ_P</td>
<td></td>
<td>2</td>
<td>1.6</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor height wind velocity</td>
<td>h_w</td>
<td>m</td>
<td>2</td>
<td>0.5</td>
<td>16</td>
<td>Log-N</td>
<td>0.66</td>
<td>0.25</td>
</tr>
<tr>
<td>Sensor height temperature</td>
<td>h_T</td>
<td>m</td>
<td>2</td>
<td>0.5</td>
<td>16</td>
<td>Log-N</td>
<td>0.66</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Fig. 5. Sensitivities of the target variable MAGT at 1 m depth [°C] for sandy ground. The sensitivities of the topographic locations are summarized as box plots. The greater the spread of the box, the higher the variability of the sensitivity within the topographic setting. The range of the box plots is equivalent to the “potential of being mislead” by the results of a sensitivity analysis performed at one single location. See Table 3 for an explanation of parameter names.

4.2 Summarized sensitivities

4.2.1 Topographic setting

MAGT sensitivities at different depths correlate strongly, and hence all the presented results concern MAGT modeled at 1 m depth. The sensitivities to the individual parameters vary strongly for different topographic factors (Fig. 5). Differences in the temperature lapse rate Γ_T of 2°C km$^{-1}$ (5.5 to 7.5°C km$^{-1}$) result in maximal ground temperature differences of up to 5°C for an elevation distance of 1000 m between the modeled location and the meteorological station. The minimal sensitivity to Γ_T is less than 0.2°C at locations of similar elevation as the meteorological station. The sensitivity to the temperature lapse rate increases linearly with the distance to the meteorological station.

The sensitivity to the dry ground albedo increases at south-exposed slopes that receive more solar radiation than adjacent slopes exposed to the north (Fig. 7). Further, low-elevation sites are more sensitive to the dry ground albedo since the snow duration is shorter there. The opposite is the case for the snow albedo, which has an enhanced sensitivity at high elevations. The sensitivity to ground roughness, the height at which wind velocity is measured, and the dew point temperature lapse rate increases for decreasing elevations. This indicates the increased importance of the turbulent fluxes in the energy balance for locations of increasing air temperatures and decreasing solar radiation.

4.2.2 Discretization errors

Ground

The sensitivity to the thickness of the first layer dz_{min} increases linearly with increasing dz_{min} for ground types sand, peat and gravel (Fig. 6). For clay, silt and rock, the sensitivity to dz_{min} increases only for $dz_{\text{min}} \geq 40$ mm, while below that threshold it is zero. The sensitivity to dz_{min} is smaller for MAGT close to 0°C, i.e., at high elevations. The highest sensitivities to dz_{min} are obtained for peat, gravel and rock (Fig. 9). For rock, this results in changes of almost 4°C. Up to 20–40 mm, the median sensitivity to dz_{min} is relatively small (Fig. 8, bottom right figure) for all environmental conditions studied here, and it increases linearly for greater values. The maximal ground thickness z_{max} is not sensitive (except for few locations in rock). The ground layer thickness parameter b is insensitive to all ground types and topographic settings.

Time

The time step for which the numerical equations are solved results in maximal MAGT differences of 0.9 to 1.3°C changes. The minimal sensitivity to the time step is around 0.2°C. The sensitivity to the time step is negligible up to 15 min, and then increases linearly (Fig. 8, top left figure). We conclude that, if computation time is no issue, the heat
conduction and the Richards equation should be solved at maximally half-hour resolution. Hourly resolution leads to average differences of around 0.2 °C in the solutions. The sensitivity to \(dt \) increases linearly with increasing \(dt \), with changes of 0.8 °C for a resolution of 4 h in average.

Snow

The number of top layers in the snow module should be set to at least two, and the maximal value of \(\text{swe}_\text{m} \) should not exceed 10 mm to ensure stable ground temperatures. A few individual locations react nonlinearly to changes in the snow discretization parameters. We were, however, not able to explain the nonlinear response at these individual points.

All discretization parameters converge to stable solutions with average errors between 0.001 and 0.06 °C between the finest resolutions, allowing for quantification of average discretization errors (Table 4). The initial ground temperature is not sensitive under all environmental conditions, which indicates that the ground initialization is reliable.

4.2.3 Model-specific parameters

The calibrated LDR parameterization by Konzelmann et al. (1994) results in difference of 0.6 to 1.2 °C with respect to the published, original value of the parameterization. Neglecting the water balance results in changes of 1.5 °C in MAGST in sandy ground, while for rock or clay, the water balance is not important. Hence, in these ground types, the water balance might be neglected to save computational time. The Richard tolerance, which influences the convergence of the Richard's equation for movement of liquid water in ground, is important in gravel (more than 0.5 °C), whereas for the other ground types it is insignificant. When modeling ground with high hydraulic conductivity, the tolerance of the Richard's equation should be set sufficiently small (e.g., \(10^{-5} \)).

4.2.4 Physical parameters influencing the energy balance

The dry ground albedo is the most sensitive parameter. Depending on the location, the sensitivity to the dry ground albedo (0.1 to 0.4) varies from around 0.5 to more than 2.5 °C for clay, for example. It is greatest at south-exposed slopes, and decreases by around 1.3 °C at north-exposed slopes. A slight decrease of the sensitivity is observed for 30° steep slopes facing south, while 30° south-facing slopes are more sensitive than flat slopes. The increased sensitivity stays in direct relation to the amount of solar radiation received at a locations. The sensitivity to the dry ground albedo increases strongly with decreasing elevation for all ground types because the snow duration is shorter at low-elevation sites. The minimal MAGT change is 0.5 °C at high elevation, incliend north-exposed slopes, while the maximal sensitivity to the dry ground albedo varies from 2.5 (clay, silt) to almost 4 °C (rock and gravel) (Fig. 9). The wet ground albedo is less sensitive than the dry ground albedo for all ground types. It ranges from 0.2 (gravel, sand, peat) to 1.3 °C (rock). In GEOtop, the value of the wet ground albedo is used if the water content equals \(\theta_{\text{sat}} \). Since \(\theta_{\text{sat}} \) is very small in rock, the value of the wet albedo is more important than for other ground types, which explains its higher sensitivity. That simplification leads to the greater sensitivity of rock to the wet ground albedo, which in reality is likely not the case. The snow height for which the snow-ground albedo is interpolated has a maximal sensitivity of more than 1 °C, very similar to the fresh snow albedo. In summary, the surface albedo determined either by snow, ground or a composition of both has the greatest influence on MAGT. This supports the importance of the solar radiation in the energy balance determining snow melt and the available energy warming the ground in this environment.

Ground roughness changes MAGT at 1 m depth maximally by around 1.2 to 2 °C (rock). The height of the wind velocity meteorological station, the Monin–Obhukov parameterization and the dew point temperature lapse rate result in differences of around 1 °C in MAGT. Turbulent fluxes as well as longwave radiation have an increased importance during the night, when no radiation from the Sun reaches Earth. Snow roughness is less important (0.5 °C) than ground roughness since the snow surface is more homogeneous.
Fig. 7. Small multiple plots of normalized box plots of MAGT at 1 m depth [°C], simulated at all topographic locations for different ground albedo values. The box plots represent the different model outputs. The length of the 95 % uncertainty range of each box plot indicates the sensitivity to dry ground albedo at each location.

Table 4. Average discretization error ε [°C] of MAGT modeled at 1 m depth due to the different discretization parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>dt</th>
<th>ε_{dt}</th>
<th>n_e</th>
<th>ε_{ne}</th>
<th>swe_e</th>
<th>ε_{swe_e}</th>
<th>n_b</th>
<th>ε_{nb}</th>
<th>n_t</th>
<th>ε_{nt}</th>
<th>d_z</th>
<th>ε_{dz}</th>
<th>b</th>
<th>ε_{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>dt</td>
<td>1800</td>
<td>0.027</td>
<td>0</td>
<td>0.001</td>
<td>1.25</td>
<td>-0.025</td>
<td>10</td>
<td>0.001</td>
<td>10</td>
<td>0.001</td>
<td>5</td>
<td>0.061</td>
<td>1</td>
<td>-0.001</td>
</tr>
<tr>
<td>ε_{dt}</td>
<td>0</td>
<td>0.113</td>
<td>0</td>
<td>0.004</td>
<td>-0.032</td>
<td>-0.02</td>
<td>20</td>
<td>0.004</td>
<td>20</td>
<td>-0.002</td>
<td>2000</td>
<td>0.138</td>
<td>1.1</td>
<td>0.002</td>
</tr>
<tr>
<td>n_e</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5000</td>
<td>0.231</td>
<td>1.2</td>
<td>0.013</td>
</tr>
<tr>
<td>ε_{ne}</td>
<td>0</td>
<td>0.226</td>
<td>0</td>
<td>0.004</td>
<td>-0.02</td>
<td>0.093</td>
<td>8</td>
<td>0.004</td>
<td>8</td>
<td>0.004</td>
<td>5000</td>
<td>0.444</td>
<td>1.3</td>
<td>0.001</td>
</tr>
<tr>
<td>swe_e</td>
<td></td>
</tr>
<tr>
<td>ε_{swe_e}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n_b</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.001</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>ε_{nb}</td>
<td>0</td>
<td>0.001</td>
<td>0</td>
<td>0.001</td>
</tr>
<tr>
<td>n_t</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.001</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>ε_{nt}</td>
<td>0</td>
<td>0.001</td>
<td>0</td>
<td>0.001</td>
</tr>
<tr>
<td>d_z</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>320</td>
<td>640</td>
<td>320</td>
<td>640</td>
<td>2500</td>
<td>1.11</td>
<td>1.9</td>
<td>2</td>
</tr>
<tr>
<td>ε_{dz}</td>
<td>0</td>
<td>-0.004</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2</td>
<td>1.91</td>
<td>1.9</td>
<td>2</td>
</tr>
<tr>
<td>ε_{b}</td>
<td>0</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>-0.006</td>
<td>-0.003</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.003</td>
<td>-0.022</td>
<td>-0.014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 8. Sensitivities of MAGT modeled at 1 m depth to the six sensitive discretization parameters d_t (top left), sw_{eq} (top middle), n_t (top right), n_m (bottom left), $d_{z_{\text{min}}}$ (bottom middle) and z_{max} (bottom right), normalized with MAGT modeled with the finest resolution of each parameter. The sensitivities are summarized as box plots for all topographic properties and the six ground types.

Fig. 9. Sensitivities of topographic sensitivity summarized as the 5, 50 and 95 % percentiles of MAGT modeled at 1 m depth for all ground types. The area of the circle indicates the 95 % percentile, and the area of the white dot the 5 % percentile of the sensitivity, summarized for all topographic locations. The color indicates the median sensitivity.

Other parameters such as temperature threshold for snow, the thermal conductivity, the Ångström parameter β and the snow viscosity change MAGT by around 0.5 °C. The remaining parameters have a maximal sensitivity that is less than 0.5 °C for all studied locations and ground types. These parameters, as well as the very sensitive parameters, were excluded from the subsequent comprehensive uncertainty analysis to reduce the parameter space.

4.2.5 Hydraulic properties of different ground types

The sensitivity of parameters influencing the water content in the ground such as the hydraulic conductivity K_h, the surface above which all water drains z_f, the saturated water content and the van Genuchten parameter n vary strongly for different ground types (Fig. 9). The sensitivities range from 0.2 (rock) to 2 °C (sand and peat) differences at 1 m depth for z_f, from 0.3 (rock) to 0.5 (clay, sand, gravel) to 1.2 °C (peat) for θ_{sat}, and from 0.2 (rock) to 1.2 °C (peat) for n_{VG}.

4.3 Uncertainties in modeled MAGT

Two arguments support the parameter selection for the uncertainty analysis: (a) we exclude all numerical, discretization and model specific parameters since these parameters add to model error and not to model uncertainty and (b) include only parameters that influence ground temperature for more than 0.5 °C and at least one ground type (Fig. 9). All other
parameters are fixed at their baseline value. The remaining parameters are sampled randomly according to their prior distribution (Table 3). In total, 1500 simulations were run; however, 750 would suffice to ensure convergence (Fig. 10).

A plot of the frequency histograms at a location at 3500 m for the different depths is given in Fig. 11 (in the year 2010). At 10 m depth, we observe a non-Gaussian temperature distribution with values mostly below the freezing point of water. Closer to the surface, the simulated temperatures are higher than 0°C. Since the initialization (1995–2000) of the ground temperature was done in a period of cold air temperatures, the ground was frozen. In the time after, air temperatures increased and the ground thawed. However, not enough energy was available to melt the ground column down to the bottom, which we observe in the distribution of the simulations at the lowest node. We can see that if ground temperatures are close to the freezing point, the frequency histogram of model simulations may be non-Gaussian. For this reason, the parametric model output uncertainty is expressed as the length of the 95% uncertainty interval.

The parametric uncertainty varies from 0.4 to 1.5°C for MAGT modeled in clay and silt. It is higher in sand, peat, gravel and rock (Fig. 12). In rock, the uncertainty decreases with increasing depth, as would be expected if integrating over a larger surface area. The increased uncertainty in sand, peat and gravel underlines the importance of accurate estimates of the hydraulic properties in these ground types. The parametric output uncertainty decreases for increasing elevation for all ground types. This can be attributed to the increased sensitivity to parameters influencing the energy balance at low-elevation sites, i.e., the ground albedo or roughness (Sect. 4.2). The environmental variability of the model uncertainties is not as pronounced as in the sensitivities, but differences between individual locations can still be observed.

Ground temperatures at greater depths integrate over larger surface areas (Gold and Lachenbruch, 1973), and are hence expected to be less variable than at the surface. Since the heat conduction is solved in one dimension in GEOtop, integration over large areas is not represented in these simulations. This may explain the constant size of the uncertainties at different depths. To study the influence of depth on model uncertainties, an uncertainty analysis should be performed solving the heat conduction in three dimensions.
However, the spatial autocorrelation of the parameters would have to be taken into account. Model uncertainty at the surface is comparable with variability of ground surface temperatures measured within 10 m × 10 m cells. These range from approximately 0.25 at homogeneous grass sites to 2.5 °C in block fields, expressed as the total range (Gubler et al., 2011). The fine-scale environmental variability is similar to the parametric uncertainty found for modeled MAGT at 10 cm depth.

5 Discussion

5.1 The relevance of representative model evaluation

The synthetic environment allowed for us to quantify model sensitivity and uncertainty under differing environmental conditions. The selected setting allowed for quantification of the influence of individual parameters for different environmental conditions, as well as identification of locations where model sensitivities and uncertainties are largest. These findings can inform future measurement campaigns. Model uncertainty (for a given location, time and variable) can be interpreted as one metric for the benefit of an individual measurement. It does, however, not provide information on the correspondence of model results with reality, and should therefore be treated with care, and as one of several metrics to inform the design of measurement campaigns. Spatially distributed ground albedo measurements would, especially at low-elevation and south-exposed sites, strongly decrease the uncertainty of mountain permafrost models, and result in more-accurate model outputs. Other parameters are sensitive only under specific conditions, such as, for example, the hydraulic properties of the ground. A study on rock faces alone results in an insignificant influence of the hydraulic properties on modeled ground temperatures. Applied to other ground types such as sand, peat or gravel, this conclusion that the hydraulic properties are insignificant is wrong. Hence, evaluation of spatially distributed models should cover the main environmental properties of the modeling domain, since otherwise important model features could be missed. A recent study obtained similar results concerning the variability of model sensitivities and uncertainties due to differing topographic and climatic conditions for a snow model (He et al., 2011).

Thus, the presented environmental setting allowed for us to draw representative conclusions about the sensitivity and uncertainties of modeled MAGT in mountain regions. The results could be extended to modeling lowland areas, where the environmental variability may be, for example, expressed as differences in vegetation. The study contributes to the request by Gupta et al. (2008) for more representative model evaluation.

5.2 Sensitivities and uncertainties of the physically based model GEOtop

Snow is important in determining the thermal state of the ground (Goodrich, 1982; Keller and Gubler, 1993; Ishikawa, 2003; Luetschg et al., 2008). Parameters such as the temperature lapse rate or the correction factor for the precipitation measurement strongly influence snow duration, but have opposite effects. A higher lapse rate, for example, leads to warmer air temperature at low-elevation sites (if the meteorological station is located above the simulated locations), and results hence in faster melt-out. This is compensated by enhanced snow accumulation due to a greater precipitation lapse rate or higher precipitation correction factor. This compensating effect between different parameters is widely known as equifinality (Beven and Freer, e.g., 2000). A similar result was obtained by Essery and Etchevers (2004) for the influence of the radiative and turbulent fluxes on snow melt, for which different parameter combinations provided equally well behaving model outputs. Combination of different measured quantities could reduce the problem and lead to arguments for model improvement if conflicting results are obtained (Essery and Etchevers, 2004). GEOtop, and probably any physically based permafrost model, would benefit from validation with distributed time series of snow height (or SWE) in order to distinguish between snow accumulation and melting processes. Similarly, mountain permafrost models could benefit from individual calibration of parameters influencing the energy balance such as the roughness length (e.g., Andreadis et al., 2009) or ground albedo (e.g., Hoelzle, 1996; Gruber, 2005).

The ground albedo, which determines the net shortwave radiation at Earth’s surface in summer, was the most important parameter when modeling MAGT. The importance of ground albedo in permafrost models has already been investigated by Hoelzle (1996), Ling and Zhang (2004) and Gruber (2005). Similarly, snow albedo is important since it strongly influences snow melting (Etchevers et al., 2004). Here, changes in the snow albedo changed MAGT by around 1 °C. The parameters influencing the turbulent fluxes determine snow melt (e.g., Etchevers et al., 2004) and change MAGT by around 0.5 to 1.5 °C. Calibration of the Konzelmann et al. (1994) LDR parameterization (e.g., Gubler et al., 2012) changes MAGT also by around 1 °C. This supports the relevance of calibrating physically based models (e.g., Beven and Binley, 1992; Gupta et al., 1998), and underlines the importance of evaluating individual processes separately if used in impact models, as, for example, done by Stocker-Mittaz et al. (2002) for mountain permafrost research. Some of the discretization parameters such as the time step at which equations are solved, as well as the thickness of the ground and snow-pack layers change MAGT by more than 1 °C. The temporal resolution should optimally be half an hour to ensure an error of less than 0.1 °C. Thickness of the uppermost ground layer of 20 mm results in 0.1 °C difference from the
smallest discretization chosen (e.g., 5 mm). The findings concerning the time step and the thickness of the uppermost soil layer are comparable to the findings by Romanovsky et al. (1997), who compared the behavior of three numerical permafrost models with analytical solutions of the heat conduction. The sensitivity of the hydraulic parameters that determine the shape of the water retention curve varies strongly for the different ground types. For clay and rock, the sensitivity is almost negligible, while for sand or gravel, the van Genuchten parameter \(n \), \(\theta_{sat} \) and the hydraulic conductivity play a major role. Seaman et al. (2009) found that \(n \), \(\theta_{sat} \) and \(\theta_{res} \) are the most important parameters to predict water retention in sand. The hydraulic conductivity \(K_h \), \(\theta_{sat} \) and \(\theta_{res} \) were most important to estimate ground moisture in Mertens et al. (2005), while Jhorar et al. (2002) recommended fitting \(\alpha \), \(n \) and \(\theta_{sat} \) when using the van Genuchten parameterization. The sensitivity of the van Genuchten parameters are hence controversial in the literature (e.g., Pollaco and Mohanty, 2012). In this study, we found that the hydraulic conductivity, the shape parameter \(n \) and the porosity most strongly influence MAGT for sand, peat and gravel. The variable sensitivity observed for the different soil types may by a reason for the controversial sensitivities found in the literature. These results underline the importance of systematic model evaluation for different environmental settings, since otherwise important model features are missed and would lead to wrong conclusions. Extrapolation of model uncertainties to locations of different environmental conditions is not feasible unless a systematic analysis spanning the environmental variability is performed.

The total parametric uncertainty goes from 0.5 to 1.5 °C for clay and silt, and increases up to around 2.4 °C for peat, sand, gravel and rock. This underlines the importance of hydraulic properties of ground types having high hydraulic conductivity and high porosity. In general, uncertainty is greater at low-elevation sites since the sensitivity to the ground albedo, as well as the turbulent fluxes, increases at low-elevation sites. Parametric uncertainty of MAGT at different depth is almost constant. The parametric model uncertainty is comparable to small-scale environmental variability of ground surface temperatures measured in Switzerland (Gubler et al., 2011).

This analyses performed in this study are of theoretical and practical relevance. The synthetic model setting allowed for quantification of the variability of model uncertainties within highly variable terrain as typically encountered when modeling mountain permafrost. To use GEOtop operationally, it should, however, be validated with spatially distributed measurements after an in-depth evaluation of all processes in the field. The diverse model parameters should be calibrated to local conditions to increase the accuracy of the model. Combination of both uncertainty and validation studies would provide additional insights on the model’s ability to reproduce the processes that are relevant for mountain permafrost.

6 Conclusions

6.1 Environmental variability

Sensitivity and uncertainty studies are widely known to inform model use and model improvement. We have shown that model sensitivities and uncertainties can vary strongly as a function of the geographic location at which the modeling study is performed. The results support the importance of systematic and representative model evaluation (e.g., Gupta et al., 2008) such as to evaluate models within a setting that represents typical situations of the modeling domain. The systematic setting allows for comparison of our physical understanding of key processes for a variety of test cases. We conclude that considering environmental variability when analyzing model uncertainties is important to gain confidence in the conclusions made about the model and the modeled outputs. Before applying a model in a certain setting, a modeler should therefore determine the most important environmental variables (topography, differing soils, plants, etc.) that may influence model outputs. However, it is also important to note that in determining the most important variables, the modeler makes assumptions about how to abstract particular processes that may not reflect reality. Nonetheless, by carrying out a systematic model assessment, it is possible to evaluate the influence of model parameters on the processes being represented.

Based on these input factors that represent the modeling domain, a systematic model assessment should be undertaken. Otherwise, if model evaluation is done at few points in the modeling domain, important model features might be missed, and misleading conclusions might be drawn. For example, model sensitivities assessed at a south-exposed location might lead to an overestimation of the sensitivity to ground albedo in comparison to north-exposed locations. The possibility of detecting model deficiencies is increased when systematic and representative model evaluations are performed. The methods presented in this study proved useful in the study of the uncertainties of a distributed physical model used in mountain permafrost research within highly variable terrain. The high computational effort undertaken by simulating all combinations of environmental variables provided reliable results. The effort could, for future studies, however be reduced by using a probabilistic approach (e.g., Latin hypercube sampling).

6.2 GEOtop sensitivities and uncertainties

Uncertainties in modeled MAGT mainly come from uncertainties in the snow conditions and the individual components of the energy balance. The sensitivities are highly variable in variable topographies. To improve modeling results, spatially distributed measurements of snow, the components of the energy balance and ground conditions are required at locations of greatest uncertainties. These uncertainties
include both modeling and measurement uncertainties due to heterogenous environmental conditions (e.g., Gubler et al., 2011). These spatially distributed measurements should be used to validate and calibrate physically based models such as GEOtop in order to improve the general ability to model ground temperatures in mountain regions.

Accurate estimates of the hydraulic properties are required for soil types peat, sand and gravel to reduce MAGT modeled with GEOtop. While the result about the sensitivity of the soil types may differ for other permafrost models, it again underlines the importance of a representative model evaluation setting. Finally, missing processes, such as advection in blocky terrain, should be integrated into future versions of GEOtop.

Acknowledgements. We would like to thank R. Essery, M. Hoelzle and an anonymous referee for their constructive comments, which helped to improve this manuscript. This work was supported by the AIAA/SWITCH-funded Swiss Multi-Science Computing Grid project (www.smescg.ch) with computational infrastructure and support. Customized libraries (geopt and GC3Pie) and user support were kindly provided by GC3: Grid Computing Competence Center (www.gc3.uzh.ch). The authors are grateful for the support by S. Maffioletti, who patiently answered any questions concerning the grid computing. This project was funded by the Swiss National Science Foundation (SNSF) via the NCCR MICS project PermaSense and via the project X-Sense funded by the Swiss National Science Foundation (SNSF) via the Competence Center (www.nano-tera.ch). All statistical analyses were performed with R (www.r-project.org). We thank MeteoSwiss for supporting the work financially during the reviewing process.

Edited by: P. Huybrechts

References

Ogawa, K. and Schmugge, T.: Mapping surface broadband emissivity of the Sahara desert using ASTER and

