Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 6, issue 6
Geosci. Model Dev., 6, 1961–1975, 2013
https://doi.org/10.5194/gmd-6-1961-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 6, 1961–1975, 2013
https://doi.org/10.5194/gmd-6-1961-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 08 Nov 2013

Development and technical paper | 08 Nov 2013

EMPOL 1.0: a new parameterization of pollen emission in numerical weather prediction models

K. Zink et al.

Related authors

Downward cloud venting of the central African biomass burning plume during the West Africa summer monsoon
Alima Dajuma, Kehinde O. Ogunjobi, Heike Vogel, Peter Knippertz, Siélé Silué, Evelyne Touré N'Datchoh, Véronique Yoboué, and Bernhard Vogel
Atmos. Chem. Phys., 20, 5373–5390, https://doi.org/10.5194/acp-20-5373-2020,https://doi.org/10.5194/acp-20-5373-2020, 2020
Short summary
Real-time pollen monitoring using digital holography
Eric Sauvageat, Yanick Zeder, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Thomas Konzelmann, Gian Lieberherr, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020,https://doi.org/10.5194/amt-13-1539-2020, 2020
Short summary
Sensitivity of modeled snow stability data to meteorological input uncertainty
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-433,https://doi.org/10.5194/nhess-2019-433, 2020
Preprint under review for NHESS
Short summary
Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK
Bettina Richter, Jürg Schweizer, Mathias W. Rotach, and Alec van Herwijnen
The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019,https://doi.org/10.5194/tc-13-3353-2019, 2019
Short summary
Composition and origin of PM2.5 aerosol particles in the upper Rhine valley in summer
Xiaoli Shen, Heike Vogel, Bernhard Vogel, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, Thomas Leisner, André S. H. Prévôt, and Harald Saathoff
Atmos. Chem. Phys., 19, 13189–13208, https://doi.org/10.5194/acp-19-13189-2019,https://doi.org/10.5194/acp-19-13189-2019, 2019
Short summary

Related subject area

Atmospheric Sciences
Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign
Li Pan, HyunCheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev., 13, 2169–2184, https://doi.org/10.5194/gmd-13-2169-2020,https://doi.org/10.5194/gmd-13-2169-2020, 2020
Short summary
WRF-Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes
Yi Zeng, Minghuai Wang, Chun Zhao, Siyu Chen, Zhoukun Liu, Xin Huang, and Yang Gao
Geosci. Model Dev., 13, 2125–2147, https://doi.org/10.5194/gmd-13-2125-2020,https://doi.org/10.5194/gmd-13-2125-2020, 2020
Short summary
Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
Luke M. Western, Zhe Sha, Matthew Rigby, Anita L. Ganesan, Alistair J. Manning, Kieran M. Stanley, Simon J. O'Doherty, Dickon Young, and Jonathan Rougier
Geosci. Model Dev., 13, 2095–2107, https://doi.org/10.5194/gmd-13-2095-2020,https://doi.org/10.5194/gmd-13-2095-2020, 2020
Short summary
Configuration and intercomparison of deep learning neural models for statistical downscaling
Jorge Baño-Medina, Rodrigo Manzanas, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 2109–2124, https://doi.org/10.5194/gmd-13-2109-2020,https://doi.org/10.5194/gmd-13-2109-2020, 2020
Short summary
Modelling the mineralogical composition and solubility of mineral dust in the Mediterranean area with CHIMERE 2017r4
Laurent Menut, Guillaume Siour, Bertrand Bessagnet, Florian Couvidat, Emilie Journet, Yves Balkanski, and Karine Desboeufs
Geosci. Model Dev., 13, 2051–2071, https://doi.org/10.5194/gmd-13-2051-2020,https://doi.org/10.5194/gmd-13-2051-2020, 2020
Short summary

Cited articles

Bianchi, D. E., Schwemmin, D. J., and Wagner Jr., W. H.: Pollen Release in the common ragweed (Ambrosia artemisiifolia), Bot. Gaz., 120, 235–243, 1959.
Dahl, Å., Galán, C., Hajkova, L., Pauling, A., Š}ikoparija, B., Smith, M., and Vokou, D.: {The Onset, Course and Intensity of the Pollen Season, in: Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts, edited by: Sofiev, M. and Bergmann, K.-C., Chapter 3, 29–70, Springer Science+Business Media, 2013.
Fuckerieder, K.: Der Graspollengehalt der Luft in Mitteleuropa, Ph. D. thesis, Auswertestelle Aerobiologie des Umweltbundes\/amtes und Botanisches Institut der Technischen Universität München, 1976.
García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Jato, V., Silva, I., Trigo, M. M., Valencia, R., and Chuine, I.: Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models, Agr. Forest Meteorol., 149, 256–262, 2009.
GAW Report No. 181: Joint Report of COST Action 728 and GURME – Overview of Tools and Methods for Meteorological and Air Pollution Mesoscale Model Evaluation and User Training, 2008.
Publications Copernicus
Download
Citation