Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 6, 591-615, 2013
https://doi.org/10.5194/gmd-6-591-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Model evaluation paper
03 May 2013
Evaluation of a near-global eddy-resolving ocean model
P. R. Oke, D. A. Griffin, A. Schiller, R. J. Matear, R. Fiedler, J. Mansbridge, A. Lenton, M. Cahill, M. A. Chamberlain, and K. Ridgway Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, G.P.O. Box 1538, Hobart TAS 7001, Australia
Abstract. Analysis of the variability of the last 18 yr (1993–2012) of a 32 yr run of a new near-global, eddy-resolving ocean general circulation model coupled with biogeochemistry is presented. Comparisons between modelled and observed mean sea level (MSL), mixed layer depth (MLD), sea level anomaly (SLA), sea surface temperature (SST), and {\chla} indicate that the model variability is realistic. We find some systematic errors in the modelled MLD, with the model generally deeper than observations, which results in errors in the {\chla}, owing to the strong biophysical coupling. We evaluate several other metrics in the model, including the zonally averaged seasonal cycle of SST, meridional overturning, volume transports through key straits and passages, zonally averaged temperature and salinity, and El Niño-related SST indices. We find that the modelled seasonal cycle in SST is 0.5–1.5 °C weaker than observed; volume transports of the Antarctic Circumpolar Current, the East Australian Current, and Indonesian Throughflow are in good agreement with observational estimates; and the correlation between the modelled and observed NINO SST indices exceeds 0.91. Most aspects of the model circulation are realistic. We conclude that the model output is suitable for broader analysis to better understand upper ocean dynamics and ocean variability at mid- and low latitudes. The new model is intended to underpin a future version of Australia's operational short-range ocean forecasting system.

Citation: Oke, P. R., Griffin, D. A., Schiller, A., Matear, R. J., Fiedler, R., Mansbridge, J., Lenton, A., Cahill, M., Chamberlain, M. A., and Ridgway, K.: Evaluation of a near-global eddy-resolving ocean model, Geosci. Model Dev., 6, 591-615, https://doi.org/10.5194/gmd-6-591-2013, 2013.
Publications Copernicus
Download
Share