Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 6, issue 4
Geosci. Model Dev., 6, 901-913, 2013
https://doi.org/10.5194/gmd-6-901-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 6, 901-913, 2013
https://doi.org/10.5194/gmd-6-901-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 05 Jul 2013

Development and technical paper | 05 Jul 2013

A test of numerical instability and stiffness in the parametrizations of the ARPÉGE and ALADIN models

M. Tudor M. Tudor
  • Croatian Meteorological and Hydrological Service, Zagreb, Grič 3, Croatia

Abstract. Meteorological numerical weather prediction (NWP) models solve a system of partial differential equations in time and space. Semi-lagrangian advection schemes allow for long time steps. These longer time steps can result in instabilities occurring in the model physics. A system of differential equations in which some solution components decay more rapidly than others is stiff. In this case it is stability rather than accuracy that restricts the time step. The vertical diffusion parametrization can cause fast non-meteorological oscillations around the slowly evolving true solution (fibrillations). These are treated with an anti-fibrillation scheme, but small oscillations remain in operational weather forecasts using ARPÉGE and ALADIN models. In this paper, a simple test is designed to reveal if the formulation of particular a physical parametrization is a stiff problem or potentially numerically unstable in combination with any other part of the model. When the test is applied to a stable scheme, the solution remains stable. However, applying the test to a potentially unstable scheme yields a solution with fibrillations of substantial amplitude. The parametrizations of the NWP model ARPÉGE were tested one by one to see which one may be the source of unstable model behaviour. The test identified the set of equations in the stratiform precipitation scheme (a diagnostic Kessler-type scheme) as a stiff problem, particularly the combination of terms arising due to the evaporation of snow.

Publications Copernicus
Download
Citation
Share