Model description paper
06 Jun 2014
Model description paper | 06 Jun 2014
GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications
A. Megann et al.
Related authors
UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018,https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments
Malcolm J. Roberts, Alex Baker, Ed W. Blockley, Daley Calvert, Andrew Coward, Helene T. Hewitt, Laura C. Jackson, Till Kuhlbrodt, Pierre Mathiot, Christopher D. Roberts, Reinhard Schiemann, Jon Seddon, Benoît Vannière, and Pier Luigi Vidale
Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019,https://doi.org/10.5194/gmd-12-4999-2019, 2019
Short summary
The impact of a new high-resolution ocean model on the Met Office North-West European Shelf forecasting system
Marina Tonani, Peter Sykes, Robert R. King, Niall McConnell, Anne-Christine Péquignet, Enda O'Dea, Jennifer A. Graham, Jeff Polton, and John Siddorn
Ocean Sci., 15, 1133–1158, https://doi.org/10.5194/os-15-1133-2019,https://doi.org/10.5194/os-15-1133-2019, 2019
Short summary
Evaluating the impact of atmospheric forcing and air–sea coupling on near-coastal regional ocean prediction
Huw W. Lewis, John Siddorn, Juan Manuel Castillo Sanchez, Jon Petch, John M. Edwards, and Tim Smyth
Ocean Sci., 15, 761–778, https://doi.org/10.5194/os-15-761-2019,https://doi.org/10.5194/os-15-761-2019, 2019
Short summary
Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf?
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019,https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018,https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018,https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
The UKC2 regional coupled environmental prediction system
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018,https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution
Enda O'Dea, Rachel Furner, Sarah Wakelin, John Siddorn, James While, Peter Sykes, Robert King, Jason Holt, and Helene Hewitt
Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017,https://doi.org/10.5194/gmd-10-2947-2017, 2017
Short summary
Prospects for improving the representation of coastal and shelf seas in global ocean models
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017,https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution version of the Met Office GC2 coupled model
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016,https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016,https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore
Heather Cannaby, Matthew D. Palmer, Tom Howard, Lucy Bricheno, Daley Calvert, Justin Krijnen, Richard Wood, Jonathan Tinker, Chris Bunney, James Harle, Andrew Saulter, Clare O'Neill, Clare Bellingham, and Jason Lowe
Ocean Sci., 12, 613–632, https://doi.org/10.5194/os-12-613-2016,https://doi.org/10.5194/os-12-613-2016, 2016
Short summary
Research priorities in support of ocean monitoring and forecasting at the Met Office
J. R. Siddorn, S. A. Good, C. M. Harris, H. W. Lewis, J. Maksymczuk, M. J. Martin, and A. Saulter
Ocean Sci., 12, 217–231, https://doi.org/10.5194/os-12-217-2016,https://doi.org/10.5194/os-12-217-2016, 2016
Short summary
NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution
R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny
Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015,https://doi.org/10.5194/gmd-8-1547-2015, 2015
Short summary
The Met Office Global Coupled model 2.0 (GC2) configuration
K. D. Williams, C. M. Harris, A. Bodas-Salcedo, J. Camp, R. E. Comer, D. Copsey, D. Fereday, T. Graham, R. Hill, T. Hinton, P. Hyder, S. Ineson, G. Masato, S. F. Milton, M. J. Roberts, D. P. Rowell, C. Sanchez, A. Shelly, B. Sinha, D. N. Walters, A. West, T. Woollings, and P. K. Xavier
Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015,https://doi.org/10.5194/gmd-8-1509-2015, 2015
Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts
E. W. Blockley, M. J. Martin, A. J. McLaren, A. G. Ryan, J. Waters, D. J. Lea, I. Mirouze, K. A. Peterson, A. Sellar, and D. Storkey
Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014,https://doi.org/10.5194/gmd-7-2613-2014, 2014
Heat loss from the Atlantic water layer in the northern Kara Sea: causes and consequences
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014,https://doi.org/10.5194/os-10-719-2014, 2014
Chaotic variability of the meridional overturning circulation on subannual to interannual timescales
J. J.-M. Hirschi, A. T. Blaker, B. Sinha, A. Coward, B. de Cuevas, S. Alderson, and G. Madec
Ocean Sci., 9, 805–823, https://doi.org/10.5194/os-9-805-2013,https://doi.org/10.5194/os-9-805-2013, 2013
Related subject area
The INALT family – a set of high-resolution nests for the Agulhas Current system within global NEMO ocean/sea-ice configurations
Franziska U. Schwarzkopf, Arne Biastoch, Claus W. Böning, Jérôme Chanut, Jonathan V. Durgadoo, Klaus Getzlaff, Jan Harlaß, Jan K. Rieck, Christina Roth, Markus M. Scheinert, and René Schubert
Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019,https://doi.org/10.5194/gmd-12-3329-2019, 2019
Short summary
Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019,https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019,https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Ecological ReGional Ocean Model with vertically resolved sediments (ERGOM SED 1.0): coupling benthic and pelagic biogeochemistry of the south-western Baltic Sea
Hagen Radtke, Marko Lipka, Dennis Bunke, Claudia Morys, Jana Woelfel, Bronwyn Cahill, Michael E. Böttcher, Stefan Forster, Thomas Leipe, Gregor Rehder, and Thomas Neumann
Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019,https://doi.org/10.5194/gmd-12-275-2019, 2019
Short summary
Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations
Tuomas Kärnä, Stephan C. Kramer, Lawrence Mitchell, David A. Ham, Matthew D. Piggott, and António M. Baptista
Geosci. Model Dev., 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018,https://doi.org/10.5194/gmd-11-4359-2018, 2018
Short summary
Veros v0.1 – a fast and versatile ocean simulator in pure Python
Dion Häfner, René Løwe Jacobsen, Carsten Eden, Mads R. B. Kristensen, Markus Jochum, Roman Nuterman, and Brian Vinter
Geosci. Model Dev., 11, 3299–3312, https://doi.org/10.5194/gmd-11-3299-2018,https://doi.org/10.5194/gmd-11-3299-2018, 2018
Short summary
Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)
Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney, and Bénédicte Ferré
Geosci. Model Dev., 11, 1849–1871, https://doi.org/10.5194/gmd-11-1849-2018,https://doi.org/10.5194/gmd-11-1849-2018, 2018
Short summary
AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf
Jennifer A. Graham, Enda O'Dea, Jason Holt, Jeff Polton, Helene T. Hewitt, Rachel Furner, Karen Guihou, Ashley Brereton, Alex Arnold, Sarah Wakelin, Juan Manuel Castillo Sanchez, and C. Gabriela Mayorga Adame
Geosci. Model Dev., 11, 681–696, https://doi.org/10.5194/gmd-11-681-2018,https://doi.org/10.5194/gmd-11-681-2018, 2018
Short summary
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
Inti Pelupessy, Ben van Werkhoven, Arjen van Elteren, Jan Viebahn, Adam Candy, Simon Portegies Zwart, and Henk Dijkstra
Geosci. Model Dev., 10, 3167–3187, https://doi.org/10.5194/gmd-10-3167-2017,https://doi.org/10.5194/gmd-10-3167-2017, 2017
Short summary
The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution
Enda O'Dea, Rachel Furner, Sarah Wakelin, John Siddorn, James While, Peter Sykes, Robert King, Jason Holt, and Helene Hewitt
Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017,https://doi.org/10.5194/gmd-10-2947-2017, 2017
Short summary
Development of BFMCOUPLER (v1.0), the coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations
Gianpiero Cossarini, Stefano Querin, Cosimo Solidoro, Gianmaria Sannino, Paolo Lazzari, Valeria Di Biagio, and Giorgio Bolzon
Geosci. Model Dev., 10, 1423–1445, https://doi.org/10.5194/gmd-10-1423-2017,https://doi.org/10.5194/gmd-10-1423-2017, 2017
Short summary
Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution
Laurent Bessières, Stéphanie Leroux, Jean-Michel Brankart, Jean-Marc Molines, Marie-Pierre Moine, Pierre-Antoine Bouttier, Thierry Penduff, Laurent Terray, Bernard Barnier, and Guillaume Sérazin
Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017,https://doi.org/10.5194/gmd-10-1091-2017, 2017
Short summary
Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2
Petteri Uotila, Doroteaciro Iovino, Martin Vancoppenolle, Mikko Lensu, and Clement Rousset
Geosci. Model Dev., 10, 1009–1031, https://doi.org/10.5194/gmd-10-1009-2017,https://doi.org/10.5194/gmd-10-1009-2017, 2017
Short summary
The Finite-volumE Sea ice–Ocean Model (FESOM2)
Sergey Danilov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017,https://doi.org/10.5194/gmd-10-765-2017, 2017
Short summary
Bottom RedOx Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water and sediment biogeochemistry
Evgeniy V. Yakushev, Elizaveta A. Protsenko, Jorn Bruggeman, Philip Wallhead, Svetlana V. Pakhomova, Shamil Kh. Yakubov, Richard G. J. Bellerby, and Raoul-Marie Couture
Geosci. Model Dev., 10, 453–482, https://doi.org/10.5194/gmd-10-453-2017,https://doi.org/10.5194/gmd-10-453-2017, 2017
Short summary
Prospects for improving the representation of coastal and shelf seas in global ocean models
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017,https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
The Marine Virtual Laboratory (version 2.1): enabling efficient ocean model configuration
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016,https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas (NEMO2.3/INDO12) – Part 2: Biogeochemistry
Elodie Gutknecht, Guillaume Reffray, Marion Gehlen, Iis Triyulianti, Dessy Berlianty, and Philippe Gaspar
Geosci. Model Dev., 9, 1523–1543, https://doi.org/10.5194/gmd-9-1523-2016,https://doi.org/10.5194/gmd-9-1523-2016, 2016
Short summary
Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas (NEMO2.3/INDO12) – Part 1: Ocean physics
Benoît Tranchant, Guillaume Reffray, Eric Greiner, Dwiyoga Nugroho, Ariane Koch-Larrouy, and Philippe Gaspar
Geosci. Model Dev., 9, 1037–1064, https://doi.org/10.5194/gmd-9-1037-2016,https://doi.org/10.5194/gmd-9-1037-2016, 2016
ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation
G. Forget, J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch
Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015,https://doi.org/10.5194/gmd-8-3071-2015, 2015
Short summary
Finite-Element Sea Ice Model (FESIM), version 2
S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter
Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015,https://doi.org/10.5194/gmd-8-1747-2015, 2015
Short summary
A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans
F. Dupont, S. Higginson, R. Bourdallé-Badie, Y. Lu, F. Roy, G. C. Smith, J.-F. Lemieux, G. Garric, and F. Davidson
Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015,https://doi.org/10.5194/gmd-8-1577-2015, 2015
Short summary
NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution
R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny
Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015,https://doi.org/10.5194/gmd-8-1547-2015, 2015
Short summary
Cited articles
Aagaard, K., Weingartner, T., Danielson, S. L., Woodgate, R. A., Johnson, G. C., and Whitledge, T. E.: Some controls on flow and salinity in Bering Strait, Geophys. Res. Lett., 33, L19602, https://doi.org/10.1029/2006GL026612, 2006.
Aksenov, Y., Bacon, S., Coward, A., and Holliday, N. P.: Polar Outflow from the Arctic Ocean: a high resolution model study, J. Marine Syst., 83, 14–37, 2010.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp., 2009.
Arakawa, A.: Computational design of long-term numerical integration of the equations of fluid motion, J. Comput. Phys., 1, 119–143, 1966.
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A., Xavier, P., McLean, P., Colman, A., and Cusack, S.: The GloSea4 ensemble prediction system for seasonal forecasting, Mon. Weather Rev., 139, 1891–1910, https://doi.org/10.1175/2010MWR3615.1, 2011.
Årthun, M., Nicholls, K. W., and Boehme, L.: Wintertime Water Mass Modification near an Antarctic Ice Front, J. Phys. Oceanogr., 43, 359–365, https://doi.org/10.1175/JPO-D-12-0186.1, 2013.
Axell, L. B.: Wind-driven Internal Waves and Langmuir Circulations in a Numerical Ocean Model of the Southern Baltic Sea, J. Geophys. Res., 107, 3204, https://doi.org/10.1029/2001JC000922, 2002.
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006.
Beckmann, A. and Doscher, R.: A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27, 581–591, 1997.
Bitz, C. M., Holland, M., Eby, M., and Weaver, A. J.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res., 106, 2441–2463, 2001.
Blaker, A. T., Hirschi, J. J.-M., McCarthy, G., Sinha, B., Taws, S., Marsh, R., Coward, A. C., and de Cuevas, B. A.: Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at 26° N, Clim. Dynam., in review, 2014.
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelley, A.: Unified modeling and prediction of weather and climate: a 25-year journey, B. Am. Meteorol. Soc., 93, 1865–1877, 2012.
Calvert, D. and Siddorn, J.: Revised vertical mixing parameters for the UK community standard configuration of the global NEMO ocean model, Hadley Centre Technical Note 95, 74 pp., available at: http://www.metoffice.gov.uk/media/pdf/9/0/HCTN_95.pdf, last access: 21 May 2014, 2013.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H.: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, [indicate subset used], NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, 1996 (updated yearly).
Clement Kinney, J., Maslowski, W., Aksenov, Y., de Cuevas, B., Nguyen, A., Osinski, R., Steele, M., Woodgate, R. A., and Zhang, J.: On the Flow Through Bering Strait: A Synthesis of Model Results and Observations, in: The Pacific Arctic Region. Ecosystem Status and Trends in a Rapidly Changing Environment, edited by: Grebmeier, J. M. and Maslowski, W., Springer, 2014.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C. D., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J.: Evaluation of the HadGEM2 model, Met Office Hadley Centre Technical Note no. HCTN 74, available from Met Office, FitzRoy Road, Exeter EX1 3PB, available at: http://www.metoffice.gov.uk/media/pdf/8/7/HCTN_74.pdf, last access: 18 November 2013, 2008.
Cunningham, S. A., Alderson, S. G., King, B. A., and Brandon, M. A.: Transport and variability of the Antarctic Circumpolar Current in Drake Passage, J. Geophys. Res., 108, 8084, https://doi.org/10.1029/2001JC001147, 2003.
Cuny, J., Rhines, P., and Kwok, R. R.: Davis Strait volume, freshwater and heat fluxes, Deep-Sea Res. Pt. I, 52, 519–542, 2005.
Curry, B., Lee, C. M., and Petrie, B.: Volume, freshwater, and heat fluxes through Davis Strait, 2004–2005, J. Phys. Oceanogr., 41, 429–462, https://doi.org/10.1175/2010JPO4536.1, 2011.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from continents: latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, 2002.
Danabasoglu, G., Large, G. W., and Briegleb, B.: Climate impacts of parameterized Nordic Sea overflows, J. Geophys. Res., 115, C11005, https://doi.org/10.1029/2010JC006243, 2010.
Dawson, A., Matthews, A. J., Stevens, D. P., Roberts, M. J., and Vidale, P.-L.: Importance of oceanic resolution and mean state on the extra-tropical response to El Nino in a matrix of coupled models, Clim. Dynam., 41, 1439–1452, https://doi.org/10.1007/s00382-012-1518-6, 2012.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Delworth, T., Rosati, A., Anderson, W., Adcroft, A., Balaji, V., Benson, R., Dixon, K., Griffies, S., Lee, H., Pacanowski, R., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model, J. Climate, 25, 2755–2781, 2012.
Farneti, R. and Gent, P. R.: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model, Ocean Model., 39, 135–145, https://doi.org/10.1016/j.ocemod.2011.02.005, 2011.
Farneti, R., Delworth, T. L., Rosati, A. J., Griffies, S. M., and Zeng, F.: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change, J. Phys. Oceanogr., 40, 1539–1557, https://doi.org/10.1175/2010JPO4353.1, 2010.
Gammelsrod, T., Leikvin, O., Lien, V., Budgell, W. P., Loeng, H., and Maslowski, W.: Mass and heat transports in the NE Barents Sea: observations and models, J. Marine Syst., 75, 56–69, https://doi.org/10.1016/j.jmarsys.2008.07.010, 2009.
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at Station Papa and long-term upper ocean study site, J. Geophys. Res., 95, 16179–16193, https://doi.org/10.1029/JC095iC09p16179, 1990.
Gent, P. R. and Danabasoglu, G.: Response to Increasing Southern Hemisphere Winds in CCSM4, J. Climate, 24, 4992–4998, https://doi.org/10.1175/JCLI-D-10-05011.1, 2011.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000.
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W., Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels, B. L., Scheinert, M., Sen Gupta, A., Severijns, C. A., Simmons, H. L., Treguier, A.-M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice Reference Experiments (COREs), J. Ocean Model., 26, https://doi.org/10.1016/j.ocemod.2008.08.007, 2009.
Hallberg, R. and Gnanadesikan, A.: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the Modeling Eddies in the Southern Ocean (MESO) project, J. Phys. Oceanogr., 36, 2232–2252, 2006.
Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system, Geosci. Model Dev., 4, 223–253, https://doi.org/10.5194/gmd-4-223-2011, 2011.
Hirschi, J. J.-M., Blaker, A. T., Sinha, B., Coward, A., de Cuevas, B., Alderson, S., and Madec, G.: Chaotic variability of the meridional overturning circulation on subannual to interannual timescales, Ocean Sci., 9, 805–823, https://doi.org/10.5194/os-9-805-2013, 2013.
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift, Nat. Geosci., 5, 872–875, https://doi.org/10.1038/ngeo1627, 2012.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., and Xiaosu, D.: Climate Change 2001: The Scientific Basis, Cambridge University Press, 944 pp., 2001.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model, Documentation and Software User's Manual, Version 4.1, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, New Mexico, available at: http://oceans11.lanl.gov/trac/CICE, last access: 18 November 2013, 2010.
Ingleby, B. and Huddleston, M.: Quality control of ocean temperature and salinity profiles – historical and real-time data, J. Marine Syst., 65, 158–175, 2007.
IOC, IHO and BODC: Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, UK, 2003.
Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., McLaren, A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A., Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton, D. M. H., Joshi, M. M., Dong, B.-W., Spencer, H., Hill, R. S. R., Gregory, J. M., Keen, A. B., Pardaens, A. K., Lowe, J. A., Bodas-Salcedo, A., Stark, S., and Searl, Y.: The New Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations, J. Climate, 19, 1327–1353, 2006.
Josey, S. A., Gulev, S., and Yu, L.: Exchanges through the ocean surface, in: Ocean Circulation and Climate: A 21st Century Perspective, 2nd Edn., edited by: Siedler, G., Griffies, S., Gould, J., and Church, J., Oxford, GB, Academic Press, International Geophysics Series, 103, 115–140, 2013.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., and Parker, D. E.: Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850 – Part 2: Biases and homogenisation, J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220, 2011.
Koch-Larrouy, A., Madec, G., Blanke, B., and Molcard, R.: Water mass transformation along the Indonesian throughflow in an OGCM, Ocean Dynam., 58, 289–309, 2008.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air-sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382- 008-0441-3, 2009.
Leclair, M. and Madec, G.: z-Coordinate, an Arbitrary Lagrangian–Eulerian coordinate separating high and low frequency motions, Ocean Model., 37, 139–152, https://doi.org/10.1016/j.ocemod.2011.02.001, 2011.
Madec, G.: NEMO – the OPA9 ocean engine: Note du Pole de Modelisation, Institut Pierre-Simion Laplace, 1:100, available at: http://www.nemo-ocean.eu, last access: 18 November 2013, 2008.
McCarthy, G., Frajka-Williams, E., Johns, W. E., Baringer, M. O., Meinen, C. S., Bryden, H. L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S. A.: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5° N, Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933, 2012.
Megann, A. P., New, A. L., Blaker, A. T., and Sinha, B.: The sensitivity of a coupled climate model to its ocean component, J. Climate, 23, 5126–5150, 2010.
Meijers, A. J. S., Shuckburgh, E., Bruneau, N., Sallee, J.-B., Bracegirdle, T. J., and Wang, Z.: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios, J. Geophys. Res., 117, C12008, https://doi.org/10.1029/2012JC008412, 2012.
Munday, D. R., Johnson, H. L., and Marshall, D. P.: Eddy Saturation of Equilibrated Circumpolar Currents, J. Phys. Ocean., 43, 507–532, https://doi.org/10.1175/JPO-D-12-095.1, 2013.
Olsen, S. M., Hansen, B., Quadfasel, D., and Østerhus, S.: Observed and modelled stability of overflow across the Greenland–Scotland ridge, Nature, 455, 519–522, 2008.
Østerhus, S., Turrrell, W. R., Jónsson, S., and Hansen, B.: Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean, Geophys. Res. Lett., 32, L07603, https://doi.org/10.1029/2004GL022188, 2005.
Penduff, T., Le Sommer, J., Barnier, B., Treguier, A.-M., Molines, J.-M., and Madec, G.: Influence of numerical schemes on current-topography interactions in $1/4^\circ$ global ocean simulations, Ocean Sci., 3, 509–524, https://doi.org/10.5194/os-3-509-2007, 2007.
Penduff, T., Juza, M., Brodeau, L., Smith, G. C., Barnier, B., Molines, J.-M., Treguier, A.-M., and Madec, G.: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales, Ocean Sci., 6, 269–284, https://doi.org/10.5194/os-6-269-2010, 2010.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., Harris, C. M., Hunke, E. C., and Walters, D. N.: Development of Global Sea Ice 5.0 CICE configuration, Geosci. Model Dev., in preparation, 2014.
Rahmstorf, S. and Willebrand, J.: The role of temperature feedback in stabilizing the thermohaline circulation, J. Phys. Oceanogr., 25, 787–805, https://doi.org/10.1175/1520-0485(1995)025<0787:TROTFI>2.0.CO;2, 1995.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, 2002.
Roberts, C. D., Waters, J., Peterson, K. A., Palmer, M. D., McCarthy, G. D., Frajka-Williams, E., Haines, K., Lea, D. J., Martin, M. J., Storkey, D., Blockley, E. W., and Zuo, H.: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5° N, Geophys. Res. Lett., 40, 5164–5170, https://doi.org/10.1002/grl.50930, 2013.
Roberts, M. J., Clayton, A., Demory, M.-E., Donners, J., Vidale, P.-L., Norton, W., Shaffrey, L., Stevens, D. P., Stevens, I., Wood, R. A., and Slingo, J.: Impact of resolution on the tropical pacific circulation in a matrix of coupled models, J. Climate, 22, 2541–2556, 2009.
Robson, J., Hodson, D., Hawkins, E., and Sutton, R.: Atlantic overturning in decline?, Nat. Geosci., 7, 2–3, 2014.
Saunders, P. P., Cunningham, S. A., de Cuevas, B. A., and Coward, A. C.: Comments on "Decadal Changes in the North Atlantic and Pacific Meridional Overturning Circulation and Heat Flux", J. Phys. Ocean., 38, 2104–2107, 2008.
Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S., O'Neill, A., Roberts, M., and Williams, K.: Improved Atlantic winter blocking in a climate model, Geophys. Res. Lett., 38, L23703, https://doi.org/10.1029/2011GL049573, 2011.
Semtner, A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, 1976.
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L., Harle, J. D., Jarrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E., Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S., Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New, A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.: U.K. HiGEM: The new U.K. high-resolution global environment model – model description and basic evaluation, J. Climate, 22, 1861–1896, 2009.
Simmons, H., Jayne, S., Laurent, L. S., and Weaver, A.: Tidally driven mixing in a numerical model of the ocean general circulation, Ocean Model., 6, 245–263, 2004.
Sinha, B., Topliss, B., Blaker, A. T., and Hirschi J. J.-M.: A numerical model study of the effects of interannual timescale wave propagation on the predictability of the Atlantic meridional overturning circulation, J. Geophys. Res., 118, 131–146, https://doi.org/10.1029/2012JC008334, 2013.
Sirevaag, A., McPhee, M. G., Morison, J. H., Shaw, W. J., and Stanton, T. P.: Wintertime mixed layer measurements at Maud Rise, Weddell Sea, J. Geophys. Res., 115, C02009, https://doi.org/10.1029/2008JC005141, 2010.
Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., and Ozhigin, V.: Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas, in: Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, edited by: Dickson, R. R., Meincke, J., and Rhines, P., Springer, the Netherlands, 45–64, 2008.
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional overturning circulation 2004–2012, Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, 2014.
Smith, D. M., Cusack, S., Colman, A. W., Folland, C. K., Harris, G. R., and Murphy, J. M.: Improved surface temperature prediction for the coming decade from a global climate model, Science, 317, 796–799, https://doi.org/10.1126/science.1139540, 2007.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.: Climate Change 2007: The Physical Science Basis, Cambridge University Press, 996 pp., 2007.
Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006, J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257, 2009.
Stein, C. A. and Stein, S.: A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359, 123–129, 1992.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting the ocean state using NEMO: the new FOAM system, Journal of Operational Oceanography, 3, 3–15, 2010.
Thomas, M. D. and Zhai, X.: Eddy-induced variability of the meridional overturning circulation in a model of the North Atlantic, Geophys. Res. Lett., 40, 1–6, https://doi.org/10.1002/grl.50532, 2013.
Viebahn, J. and Eden, C.: Towards the impact of eddies on the response of the southern ocean to climate change, Ocean Model., 34, 150–165, 2010.
Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., and Jackson, L.: History matching for the quantification and reduction of parametric uncertainty in climate model projections, Clim. Dynam., 41, 1703–1729, https://doi.org/10.1007/s00382-013-1896-4, 2013.
Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column, Geophys. Res. Lett., 39, L24603, https://doi.org/10.1029/2012GL054092, 2012.
Worby, A. P., Geiger, C. A., Paget, M. J., van Woert, M. L., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res., 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008.
Yeager, S. G. and Jochum, M.: The connection between Labrador Sea buoyancy loss, deep western boundary current strength, and Gulf Stream path in an ocean circulation model, Ocean Model., 30, 207–224, 2009.
Zalesak, S. T.: Fully multidimensional flux corrected transport algorithms for fluids, J. Comput. Phys., 31, 335–362, 1979.
Zhang, J., Thomas, D. R., Rothrock, D. A., Lindsay, R. W., Yu, Y., and Kwok, R.: Assimilation of ice motion observations and comparisons with submarine ice thickness data, J. Geophys. Res., 108, 3170, https://doi.org/10.1029/2001JC001041, 2003.