Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 7, issue 6 | Copyright
Geosci. Model Dev., 7, 2831-2857, 2014
https://doi.org/10.5194/gmd-7-2831-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 03 Dec 2014

Model description paper | 03 Dec 2014

GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects

S. Endrizzi1, S. Gruber2, M. Dall'Amico3, and R. Rigon4 S. Endrizzi et al.
  • 1Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
  • 2Carleton University, Department of Geography and Environmental Studies, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
  • 3Mountaineering GmbH, Siemensstrasse 19, 39100 Bozen, Italy
  • 4Dipartimento di Ingegneria Civile, Ambientale e Meccanica e CUDAM, Università di Trento, Via Mesiano 77, 38123 Trento, Italy

Abstract. GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature.

Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.

Publications Copernicus
Download
Short summary
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and below the soil surface, reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing and simulates snow cover. The core components of GEOtop 2.0. are described. Based on a synthetic simulation, it is shown that the interaction of processes represented in GEOtop 2.0. can result in phenomena that are relevant for applications involving frozen soils.
GEOtop is a fine scale grid-based simulator that represents the heat and water budgets at and...
Citation
Share