Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 7, issue 6 | Copyright
Geosci. Model Dev., 7, 2969-2982, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 15 Dec 2014

Development and technical paper | 15 Dec 2014

A strategy for GIS-based 3-D slope stability modelling over large areas

M. Mergili et al.
Related authors
Probabilistic landslide ensemble prediction systems: Lessons to be learned from hydrology
Ekrem Canli, Martin Mergili, and Thomas Glade
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2017
Revised manuscript accepted for NHESS
r.randomwalk v1, a multi-functional conceptual tool for mass movement routing
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027-4043,,, 2015
Integrated statistical modelling of spatial landslide probability
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2015
Revised manuscript not accepted
Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779-2796,,, 2013
Related subject area
Earth and Space Science Informatics
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875-2895,,, 2018
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525-2539,,, 2018
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419-2427,,, 2018
A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619-4646,,, 2017
Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519-3545,,, 2017
Cited articles
Agarwal, D., Puri, S., He, X., and Prasad, S. K.: Crayons: An Azure Cloud Based Parallel System for GIS Overlay Operations, High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, 10–16 November 2012, 2012.
Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J.: Hadoop GIS: a high performance spatial data warehousing system over mapreduce, Proceedings of the VLDB Endowment, 6, 1009–1020, 2013.
Alvioli, M., Marchesini, I., Rossi, M., Santangelo, M., Cardinali, M., Reichenbach, P., Ardizzone, F., Fiorucci, F., Balducci, V., Mondini, A. C., and Guzzetti, F.: Parallel processing in WPS services for geological and geomorphological mapping, 8th IAG International Conference on Geomorphology Paris, 27–31 August 2013, 2013.
Alvioli, M., Rossi, M., and Guzzetti, F.: Scaling properties of rainfall-induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, 2014.
Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., and Reichenbach, P.: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar, Nat. Hazards Earth Syst. Sci., 7, 637–650,, 2007.
Publications Copernicus
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
The article deals with strategies to (i) reduce computation time and to (ii) appropriately...