Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 7, issue 6
Geosci. Model Dev., 7, 2969–2982, 2014
https://doi.org/10.5194/gmd-7-2969-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 7, 2969–2982, 2014
https://doi.org/10.5194/gmd-7-2969-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 15 Dec 2014

Development and technical paper | 15 Dec 2014

A strategy for GIS-based 3-D slope stability modelling over large areas

M. Mergili et al.
Related authors  
Back-calculation of the 2017 Piz Cengalo-Bondo landslide cascade with r.avaflow
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-204,https://doi.org/10.5194/nhess-2019-204, 2019
Manuscript under review for NHESS
Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018,https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
r.randomwalk v1, a multi-functional conceptual tool for mass movement routing
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015,https://doi.org/10.5194/gmd-8-4027-2015, 2015
Short summary
Integrated statistical modelling of spatial landslide probability
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-5677-2015,https://doi.org/10.5194/nhessd-3-5677-2015, 2015
Revised manuscript not accepted
Short summary
Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013,https://doi.org/10.5194/nhess-13-2779-2013, 2013
Related subject area  
Earth and Space Science Informatics
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019,https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-79,https://doi.org/10.5194/gmd-2019-79, 2019
Revised manuscript accepted for GMD
Short summary
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019,https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Global hydro-climatic biomes identified via multitask learning
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018,https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018,https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Cited articles  
Agarwal, D., Puri, S., He, X., and Prasad, S. K.: Crayons: An Azure Cloud Based Parallel System for GIS Overlay Operations, High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion, 10–16 November 2012, 2012.
Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J.: Hadoop GIS: a high performance spatial data warehousing system over mapreduce, Proceedings of the VLDB Endowment, 6, 1009–1020, 2013.
Alvioli, M., Marchesini, I., Rossi, M., Santangelo, M., Cardinali, M., Reichenbach, P., Ardizzone, F., Fiorucci, F., Balducci, V., Mondini, A. C., and Guzzetti, F.: Parallel processing in WPS services for geological and geomorphological mapping, 8th IAG International Conference on Geomorphology Paris, 27–31 August 2013, 2013.
Alvioli, M., Rossi, M., and Guzzetti, F.: Scaling properties of rainfall-induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, 2014.
Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., and Reichenbach, P.: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar, Nat. Hazards Earth Syst. Sci., 7, 637–650, https://doi.org/10.5194/nhess-7-637-2007, 2007.
Publications Copernicus
Download
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
The article deals with strategies to (i) reduce computation time and to (ii) appropriately...
Citation