Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 7, issue 1
Geosci. Model Dev., 7, 303–315, 2014
https://doi.org/10.5194/gmd-7-303-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 7, 303–315, 2014
https://doi.org/10.5194/gmd-7-303-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 13 Feb 2014

Development and technical paper | 13 Feb 2014

Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions

S. M. Miller et al.
Related authors  
Geostatistical inverse modeling with very large datasets: an examplefrom the OCO-2 satellite
Scot M. Miller, Arvind K. Saibaba, Michael E. Trudeau, Marikate E. Mountain, and Arlyn E. Andrews
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-185,https://doi.org/10.5194/gmd-2019-185, 2019
Manuscript under review for GMD
Short summary
The impact of improved satellite retrievals on estimates of biospheric carbon balance
Scot M. Miller and Anna M. Michalak
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-382,https://doi.org/10.5194/acp-2019-382, 2019
Manuscript under review for ACP
Short summary
Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite
Scot M. Miller, Anna M. Michalak, Vineet Yadav, and Jovan M. Tadić
Atmos. Chem. Phys., 18, 6785–6799, https://doi.org/10.5194/acp-18-6785-2018,https://doi.org/10.5194/acp-18-6785-2018, 2018
Short summary
Atmospheric inverse modeling via sparse reconstruction
Nils Hase, Scot M. Miller, Peter Maaß, Justus Notholt, Mathias Palm, and Thorsten Warneke
Geosci. Model Dev., 10, 3695–3713, https://doi.org/10.5194/gmd-10-3695-2017,https://doi.org/10.5194/gmd-10-3695-2017, 2017
Short summary
Constraining sector-specific CO2 and CH4 emissions in the US
Scot M. Miller and Anna M. Michalak
Atmos. Chem. Phys., 17, 3963–3985, https://doi.org/10.5194/acp-17-3963-2017,https://doi.org/10.5194/acp-17-3963-2017, 2017
Short summary
Related subject area  
Atmospheric Sciences
A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data
Shizhang Wang and Zhiquan Liu
Geosci. Model Dev., 12, 4031–4051, https://doi.org/10.5194/gmd-12-4031-2019,https://doi.org/10.5194/gmd-12-4031-2019, 2019
Short summary
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment
Frederik Kurzrock, Hannah Nguyen, Jerome Sauer, Fabrice Chane Ming, Sylvain Cros, William L. Smith Jr., Patrick Minnis, Rabindra Palikonda, Thomas A. Jones, Caroline Lallemand, Laurent Linguet, and Gilles Lajoie
Geosci. Model Dev., 12, 3939–3954, https://doi.org/10.5194/gmd-12-3939-2019,https://doi.org/10.5194/gmd-12-3939-2019, 2019
Short summary
Improved tropospheric and stratospheric sulfur cycle in the aerosol–chemistry–climate model SOCOL-AERv2
Aryeh Feinberg, Timofei Sukhodolov, Bei-Ping Luo, Eugene Rozanov, Lenny H. E. Winkel, Thomas Peter, and Andrea Stenke
Geosci. Model Dev., 12, 3863–3887, https://doi.org/10.5194/gmd-12-3863-2019,https://doi.org/10.5194/gmd-12-3863-2019, 2019
Short summary
Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0)
Douglas S. Hamilton, Rachel A. Scanza, Yan Feng, Joseph Guinness, Jasper F. Kok, Longlei Li, Xiaohong Liu, Sagar D. Rathod, Jessica S. Wan, Mingxuan Wu, and Natalie M. Mahowald
Geosci. Model Dev., 12, 3835–3862, https://doi.org/10.5194/gmd-12-3835-2019,https://doi.org/10.5194/gmd-12-3835-2019, 2019
Short summary
Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations
Manu Anna Thomas, Abhay Devasthale, Tristan L'Ecuyer, Shiyu Wang, Torben Koenigk, and Klaus Wyser
Geosci. Model Dev., 12, 3759–3772, https://doi.org/10.5194/gmd-12-3759-2019,https://doi.org/10.5194/gmd-12-3759-2019, 2019
Short summary
Cited articles  
Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M.: An Introduction to MCMC for machine learning, Mach. Learn., 50, 5–43, https://doi.org/10.1023/A:1020281327116, 2003.
Antoniou, A. and Lu, W.: Practical Optimization: Algorithms and Engineering Applications, Springer, New York, NY, 2007.
Barnes, R. and You, K.: Adding bounds to kriging, Math. Geol., 24, 171–176, https://doi.org/10.1007/BF00897030, 1992.
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, https://doi.org/10.1029/2009JD012287, 2009.
Biraud, S. C., Torn, M. S., Smith, J. R., Sweeney, C., Riley, W. J., and Tans, P. P.: A multi-year record of airborne CO2 observations in the US Southern Great Plains, Atmos. Meas. Tech., 6, 751–763, https://doi.org/10.5194/amt-6-751-2013, 2013.
Publications Copernicus
Download
Citation