Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 7, issue 6
Geosci. Model Dev., 7, 3135–3151, 2014
https://doi.org/10.5194/gmd-7-3135-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 7, 3135–3151, 2014
https://doi.org/10.5194/gmd-7-3135-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 19 Dec 2014

Model description paper | 19 Dec 2014

MeteoIO 2.4.2: a preprocessing library for meteorological data

M. Bavay and T. Egger
Related authors  
Cold-to-warm flow regime transition in snow avalanches
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018,https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary
Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017,https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Distributed snow and rock temperature modelling in steep rock walls using Alpine3D
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017,https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
How much can we save? Impact of different emission scenarios on future snow cover in the Alps
Christoph Marty, Sebastian Schlögl, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017,https://doi.org/10.5194/tc-11-517-2017, 2017
Short summary
StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016,https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Related subject area  
Cryosphere
Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model
Shahbaz Memon, Dorothée Vallot, Thomas Zwinger, Jan Åström, Helmut Neukirchen, Morris Riedel, and Matthias Book
Geosci. Model Dev., 12, 3001–3015, https://doi.org/10.5194/gmd-12-3001-2019,https://doi.org/10.5194/gmd-12-3001-2019, 2019
Short summary
A rapidly converging initialisation method to simulate the present-day Greenland ice sheet using the GRISLI ice sheet model (version 1.3)
Sébastien Le clec'h, Aurélien Quiquet, Sylvie Charbit, Christophe Dumas, Masa Kageyama, and Catherine Ritz
Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019,https://doi.org/10.5194/gmd-12-2481-2019, 2019
Short summary
Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3)
Lionel Favier, Nicolas C. Jourdain, Adrian Jenkins, Nacho Merino, Gaël Durand, Olivier Gagliardini, Fabien Gillet-Chaulet, and Pierre Mathiot
Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019,https://doi.org/10.5194/gmd-12-2255-2019, 2019
Short summary
CSIB v1 (Canadian Sea-ice Biogeochemistry): a sea-ice biogeochemical model for the NEMO community ocean modelling framework
Hakase Hayashida, James R. Christian, Amber M. Holdsworth, Xianmin Hu, Adam H. Monahan, Eric Mortenson, Paul G. Myers, Olivier G. J. Riche, Tessa Sou, and Nadja S. Steiner
Geosci. Model Dev., 12, 1965–1990, https://doi.org/10.5194/gmd-12-1965-2019,https://doi.org/10.5194/gmd-12-1965-2019, 2019
Short summary
LIVVkit 2.1: automated and extensible ice sheet model validation
Katherine J. Evans, Joseph H. Kennedy, Dan Lu, Mary M. Forrester, Stephen Price, Jeremy Fyke, Andrew R. Bennett, Matthew J. Hoffman, Irina Tezaur, Charles S. Zender, and Miren Vizcaíno
Geosci. Model Dev., 12, 1067–1086, https://doi.org/10.5194/gmd-12-1067-2019,https://doi.org/10.5194/gmd-12-1067-2019, 2019
Short summary
Cited articles  
Ballou, D. P. and Pazer, H. L.: Modeling data and process quality in multi-input, multi-output information systems, Manage. Sci., 31, 150–162, 1985.
Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., and Parlange, M.: Sensorscope: Out-of-the-box environmental monitoring, In Information Processing in Sensor Networks, 2008, IPSN'08, International Conference, 332–343, IEEE, 2008.
Beck, K. and Andres, C.: Extreme Programming Explained: Embrace Change, Addison-Wesley Professional, 2nd Edn., 2004.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, 1975.
Butterworth, S.: On the theory of filters amplifiers, Experimental Wireless & the Wireless Engineer, 7, 536–541, 1930.
Publications Copernicus
Download
Short summary
The open-source MeteoIO library has been designed to perform the data preprocessing required by numerical models using large meteorological data sets, with a strong emphasis on simplicity and modularity. It retrieves, filters and resamples the data if necessary as well as provides spatial interpolations and parameterizations. It presents a uniform interface to meteorological data in the models, hides the complexity of the preprocessing and guarantees a robust behaviour in case of data errors.
The open-source MeteoIO library has been designed to perform the data preprocessing required by...
Citation