Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 5
Geosci. Model Dev., 8, 1285-1297, 2015
https://doi.org/10.5194/gmd-8-1285-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 8, 1285-1297, 2015
https://doi.org/10.5194/gmd-8-1285-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 04 May 2015

Model description paper | 04 May 2015

A generic approach to explicit simulation of uncertainty in the NEMO ocean model

J.-M. Brankart et al.
Related authors  
Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic ocean circulation
G. Candille, J.-M. Brankart, and P. Brasseur
Ocean Sci., 11, 425-438, https://doi.org/10.5194/os-11-425-2015,https://doi.org/10.5194/os-11-425-2015, 2015
Short summary
Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation
M. Meinvielle, J.-M. Brankart, P. Brasseur, B. Barnier, R. Dussin, and J. Verron
Ocean Sci., 9, 867-883, https://doi.org/10.5194/os-9-867-2013,https://doi.org/10.5194/os-9-867-2013, 2013
Related subject area  
Oceanography
Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations
Tuomas Kärnä, Stephan C. Kramer, Lawrence Mitchell, David A. Ham, Matthew D. Piggott, and António M. Baptista
Geosci. Model Dev., 11, 4359-4382, https://doi.org/10.5194/gmd-11-4359-2018,https://doi.org/10.5194/gmd-11-4359-2018, 2018
Short summary
Data assimilation cycle length and observation impact in mesoscale ocean forecasting
Paul Sandery
Geosci. Model Dev., 11, 4011-4019, https://doi.org/10.5194/gmd-11-4011-2018,https://doi.org/10.5194/gmd-11-4011-2018, 2018
Short summary
Verification of the mixed layer depth in the OceanMAPS operational forecast model for Austral autumn
Daniel Boettger, Robin Robertson, and Gary B. Brassington
Geosci. Model Dev., 11, 3795-3805, https://doi.org/10.5194/gmd-11-3795-2018,https://doi.org/10.5194/gmd-11-3795-2018, 2018
Short summary
A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1)
Marco van Hulten, Jean-Claude Dutay, and Matthieu Roy-Barman
Geosci. Model Dev., 11, 3537-3556, https://doi.org/10.5194/gmd-11-3537-2018,https://doi.org/10.5194/gmd-11-3537-2018, 2018
Short summary
Veros v0.1 – a fast and versatile ocean simulator in pure Python
Dion Häfner, René Løwe Jacobsen, Carsten Eden, Mads R. B. Kristensen, Markus Jochum, Roman Nuterman, and Brian Vinter
Geosci. Model Dev., 11, 3299-3312, https://doi.org/10.5194/gmd-11-3299-2018,https://doi.org/10.5194/gmd-11-3299-2018, 2018
Short summary
Cited articles  
Achatz, U., Löbl, U., Dolaptchiev, S. I., and Gritsun, A.: Fluctuation-dissipation supplemented by nonlinearity: a climate-dependent subgrid-scale parameterization in low-order climate models, J. Atmos. Sci., 70, 1833–1846, 2013.
Arhonditsis, G. B., Perhar, G., Zhang, W., Massos, E., Shi, M., and Das, A.: Addressing equifinality and uncertainty in eutrophication models, Water Resour. Res., 44, W01420, https://doi.org/10.1029/2007WR005862, 2008.
Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Sci., 6, 247–262, https://doi.org/10.5194/os-6-247-2010, 2010.
Berloff, P.: On rectification of randomly forced flows, J. Mar. Res., 63, 497–527, https://doi.org/10.1357/0022240054307894, 2005.
Bertino, L., Evensen, G., and Wackernagel, H.: Sequential data assimilation techniques in oceanography, Int. Stat. Rev., 71, 223–241, 2003.
Publications Copernicus
Special issue
Download
Short summary
In this paper, a simple and generic implementation approach is presented, with the aim of transforming a deterministic ocean model (like NEMO) into a probabilistic model. With this approach, several kinds of stochastic parameterizations are implemented to simulate the non-deterministic effect of unresolved processes, unresolved scales, and unresolved diversity. The method is illustrated with three applications, showing that uncertainties can produce a major effect in the model simulations.
In this paper, a simple and generic implementation approach is presented, with the aim of...
Citation
Share