Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Volume 8, issue 5
Geosci. Model Dev., 8, 1461-1471, 2015
https://doi.org/10.5194/gmd-8-1461-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 1461-1471, 2015
https://doi.org/10.5194/gmd-8-1461-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 20 May 2015

Development and technical paper | 20 May 2015

ORCHIDEE-SRC v1.0: an extension of the land surface model ORCHIDEE for simulating short rotation coppice poplar plantations

T. De Groote1,2, D. Zona1,*, L. S. Broeckx1, M. S. Verlinden1, S. Luyssaert3, V. Bellassen4,**, N. Vuichard3, R. Ceulemans1, A. Gobin2, and I. A. Janssens1 T. De Groote et al.
  • 1Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
  • 2VITO, Boeretang 200, 2400 Mol, Belgium
  • 3CEA-CNRS-UVSQ, UMR8212 – Laboratoire des sciences du climat et de l'environnement (LSCE), Orme des Merisiers, 91191 Gif-sur-Yvette, France
  • 4CDC Climat, 47 rue de la Victoire, 75009 Paris, France
  • *now at: Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
  • **now at: INRA, 147 rue de l'Université, 75000 Paris, France

Abstract. Modelling biomass production and the environmental impact of short rotation coppice (SRC) plantations is necessary for planning their deployment, as they are becoming increasingly important for global energy production. This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of SRC plantations.

The model uses weather data, soil texture and species-specific parameters to predict the aboveground (harvestable) biomass production, as well as carbon and energy fluxes of an SRC plantation. Modifications to the model were made to the management, growth, and allocation modules of ORCHIDEE.

The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. Biomass yield data were collected from 23 other sites across Europe and compared to 22 simulations across a comparable geographic range. The simulations show that the model predicts very well aboveground (harvestable) biomass production (within measured ranges), ecosystem photosynthesis (R2 = 0.78, NRMSE = 0.064, PCC = 0.89) and ecosystem respiration (R2 = 0.95, NRMSE = 0.078 PCC = 0.91). Also soil temperature and soil moisture are simulated adequately, but due to the simplicity of the soil moisture simulation, there are some discrepancies, which also influence the simulation of the latent heat flux.

Overall, the extended model, ORCHIDEE-SRC, proved to be a tool suitable for predicting biomass production of SRC plantations.

Publications Copernicus
Download
Short summary
This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of short rotation coppice (SRC) plantations. The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. The simulations show that the model predicts aboveground biomass production, ecosystem photosynthesis and ecosystem respiration well.
This paper describes the modification of the widely used land surface model ORCHIDEE for...
Citation
Share