Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 6
Geosci. Model Dev., 8, 1763–1773, 2015
https://doi.org/10.5194/gmd-8-1763-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 1763–1773, 2015
https://doi.org/10.5194/gmd-8-1763-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 12 Jun 2015

Methods for assessment of models | 12 Jun 2015

Path-integral method for the source apportionment of photochemical pollutants

A. M. Dunker

Related authors

Contributions of foreign, domestic and natural emissions to US ozone estimated using the path-integral method in CAMx nested within GEOS-Chem
Alan M. Dunker, Bonyoung Koo, and Greg Yarwood
Atmos. Chem. Phys., 17, 12553–12571, https://doi.org/10.5194/acp-17-12553-2017,https://doi.org/10.5194/acp-17-12553-2017, 2017
Short summary

Related subject area

Atmospheric Sciences
Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields
Luke M. Western, Zhe Sha, Matthew Rigby, Anita L. Ganesan, Alistair J. Manning, Kieran M. Stanley, Simon J. O'Doherty, Dickon Young, and Jonathan Rougier
Geosci. Model Dev., 13, 2095–2107, https://doi.org/10.5194/gmd-13-2095-2020,https://doi.org/10.5194/gmd-13-2095-2020, 2020
Short summary
Configuration and intercomparison of deep learning neural models for statistical downscaling
Jorge Baño-Medina, Rodrigo Manzanas, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 2109–2124, https://doi.org/10.5194/gmd-13-2109-2020,https://doi.org/10.5194/gmd-13-2109-2020, 2020
Short summary
Modelling the mineralogical composition and solubility of mineral dust in the Mediterranean area with CHIMERE 2017r4
Laurent Menut, Guillaume Siour, Bertrand Bessagnet, Florian Couvidat, Emilie Journet, Yves Balkanski, and Karine Desboeufs
Geosci. Model Dev., 13, 2051–2071, https://doi.org/10.5194/gmd-13-2051-2020,https://doi.org/10.5194/gmd-13-2051-2020, 2020
Short summary
The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1
Mike Bush, Tom Allen, Caroline Bain, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Humphrey Lean, Adrian Lock, James Manners, Marion Mittermaier, Cyril Morcrette, Rachel North, Jon Petch, Chris Short, Simon Vosper, David Walters, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020,https://doi.org/10.5194/gmd-13-1999-2020, 2020
Short summary
The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory
Mariko Oue, Aleksandra Tatarevic, Pavlos Kollias, Dié Wang, Kwangmin Yu, and Andrew M. Vogelmann
Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020,https://doi.org/10.5194/gmd-13-1975-2020, 2020
Short summary

Cited articles

Bowman, F. M.: A multi-parent assignment method for analyzing atmospheric chemistry mechanisms, Atmos. Environ., 39, 2519–2533, 2005.
Bowman, F. M. and Seinfeld, J. H.: Ozone productivity of atmospheric organics, J. Geophys. Res., 99, 5309–5324, 1994.
Butler, T. M., Lawrence, M. G., Taraborrelli, D., and Lelieveld, J.: Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach, Atmos. Environ., 45, 4082–4090, 2011.
Cohan, D. S., Hakami, A., Hu, Y., and Russell, A. G.: Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis, Environ. Sci. Technol., 39, 6739–6748, 2005.
Dunker, A. M.: Efficient calculation of sensitivity coefficients for complex atmospheric models, Atmos. Environ., 15, 1155–1161, 1981.
Publications Copernicus
Download
Short summary
A new method is presented for allocating the anthropogenic part of a pollutant concentration to the sources responsible. The method requires integrating sensitivity coefficients over a range of emissions defined by an emission-control strategy. A simplified photochemical model is used to evaluate options for the numerical integration and the dependence of the source contributions on the control strategy. Results are presented for ozone, formaldehyde, nitrogen dioxide, and nitric acid.
A new method is presented for allocating the anthropogenic part of a pollutant concentration to...
Citation