Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 8, issue 6 | Copyright
Geosci. Model Dev., 8, 1821-1829, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 22 Jun 2015

Model description paper | 22 Jun 2015

simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)

J. L. Woo and V. F. McNeill J. L. Woo and V. F. McNeill
  • Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

Abstract. There is increasing evidence that the uptake and aqueous processing of water-soluble volatile organic compounds (VOCs) by wet aerosols or cloud droplets is an important source of secondary organic aerosol (SOA). We recently developed GAMMA (Gas–Aerosol Model for Mechanism Analysis), a zero-dimensional kinetic model that couples gas-phase and detailed aqueous-phase atmospheric chemistry for speciated prediction of SOA and organosulfate formation in cloud water or aqueous aerosols. Results from GAMMA simulations of SOA formation in aerosol water (aaSOA) (McNeill et al., 2012) indicate that it is dominated by two pathways: isoprene epoxydiol (IEPOX) uptake followed by ring-opening chemistry (under low-NOx conditions) and glyoxal uptake. This suggested that it is possible to model the majority of aaSOA mass using a highly simplified reaction scheme. We have therefore developed a reduced version of GAMMA, simpleGAMMA. Close agreement in predicted aaSOA mass is observed between simpleGAMMA and GAMMA under all conditions tested (between pH 1–4 and RH 40–80 %) after 12 h of simulation. simpleGAMMA is computationally efficient and suitable for coupling with larger-scale atmospheric chemistry models or analyzing ambient measurement data.

Publications Copernicus