Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
  • CiteScore value: 5.56 CiteScore
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 7
Geosci. Model Dev., 8, 1899–1918, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 1899–1918, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 01 Jul 2015

Methods for assessment of models | 01 Jul 2015

Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

C. Safta et al.
Related authors  
Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods
Dan Lu, Daniel Ricciuto, Anthony Walker, Cosmin Safta, and William Munger
Biogeosciences, 14, 4295–4314,,, 2017
Short summary
Related subject area  
Climate and Earth System Modeling
What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models
Razi Sheikholeslami, Saman Razavi, and Amin Haghnegahdar
Geosci. Model Dev., 12, 4275–4296,,, 2019
Short summary
SKRIPS v1.0: a regional coupled ocean–atmosphere modeling framework (MITgcm–WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea
Rui Sun, Aneesh C. Subramanian, Arthur J. Miller, Matthew R. Mazloff, Ibrahim Hoteit, and Bruce D. Cornuelle
Geosci. Model Dev., 12, 4221–4244,,, 2019
Short summary
eSCAPE: Regional to Global Scale Landscape Evolution Model v2.0
Tristan Salles
Geosci. Model Dev., 12, 4165–4184,,, 2019
Short summary
Detecting causality signal in instrumental measurements and climate model simulations: global warming case study
Mikhail Y. Verbitsky, Michael E. Mann, Byron A. Steinman, and Dmitry M. Volobuev
Geosci. Model Dev., 12, 4053–4060,,, 2019
Short summary
Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2)
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012,,, 2019
Short summary
Cited articles  
Barr, A., Hollinger, D., and Richardson, A. D.: CO2 Flux Measurement Uncertainty Estimates for NACP, AGU Fall Meeting, December 2009, abstract number B54A-04B, 2009.
Barr, A., Ricciuto, D. M., Schaefer, K., Richardson, A., Agarwal, D., Thornton, P. E., Davis, K., Jackson, B., Cook, R. B., Hollinger, D. Y., van Ingen, C., Amiro, B., ans M. A. Arain, A. A., Baldocchi, D., Black, T. A., Bolstad, P., Curtis, P., Desai, A., Dragoni, D., Flanagan, L., Gu, L., Katul, G., Law, B. E., Lafleur, P., Margolis, H., Matamala, R., Meyers, T., McCaughey, H., Monson, R., Munger, J. W., Oechel, W., Oren, R., Roulet, N., Torn, M., and Verma, S.: NACP Site: Tower Meteorology, Flux Observations with Uncertainty, and Ancillary Data, available at: (last access: 10 June 2015) from Oak Ridge National Laboratory Distributed Active Archive Center,, 2013.
Braswell, B. H., Sacks, W. J., Linder, E., and Schimel, D. S.: Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations, Global Change Biol., 11, 335–355,, 2005.
Campolongo, F., Saltelli, A., Sørensen, T., and Tarantola, S.: Hitchhiker's Guide to Sensitivity Analysis, in: Sensitivity Analysis, edited by: Saltelli, A., Chan, K., and Scott, E., Wiley, Chicester, 2000.
Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., Ricciuto, D. M., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Wijk, M. T. V.: The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data, Agric. For. Meteorol., 149, 1597–1615,, 2009.
Publications Copernicus
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
In this paper we propose a probabilistic framework for an uncertainty quantification study of a...