Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 7
Geosci. Model Dev., 8, 1991–2007, 2015
https://doi.org/10.5194/gmd-8-1991-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 1991–2007, 2015
https://doi.org/10.5194/gmd-8-1991-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 07 Jul 2015

Model description paper | 07 Jul 2015

System for Automated Geoscientific Analyses (SAGA) v. 2.1.4

O. Conrad et al.
Related authors  
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018,https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Related subject area  
Climate and Earth System Modeling
OpenArray v1.0: a simple operator library for the decoupling of ocean modeling and parallel computing
Xiaomeng Huang, Xing Huang, Dong Wang, Qi Wu, Yi Li, Shixun Zhang, Yuwen Chen, Mingqing Wang, Yuan Gao, Qiang Tang, Yue Chen, Zheng Fang, Zhenya Song, and Guangwen Yang
Geosci. Model Dev., 12, 4729–4749, https://doi.org/10.5194/gmd-12-4729-2019,https://doi.org/10.5194/gmd-12-4729-2019, 2019
Short summary
Update and evaluation of the ozone dry deposition in Oslo CTM3 v1.0
Stefanie Falk and Amund Søvde Haslerud
Geosci. Model Dev., 12, 4705–4728, https://doi.org/10.5194/gmd-12-4705-2019,https://doi.org/10.5194/gmd-12-4705-2019, 2019
Short summary
GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses
Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber
Geosci. Model Dev., 12, 4661–4679, https://doi.org/10.5194/gmd-12-4661-2019,https://doi.org/10.5194/gmd-12-4661-2019, 2019
Short summary
Model evaluation of high-resolution urban climate simulations: using the WRF/Noah LSM/SLUCM model (Version 3.7.1) as a case study
Zhiqiang Li, Yulun Zhou, Bingcheng Wan, Hopun Chung, Bo Huang, and Biao Liu
Geosci. Model Dev., 12, 4571–4584, https://doi.org/10.5194/gmd-12-4571-2019,https://doi.org/10.5194/gmd-12-4571-2019, 2019
Short summary
Developing and optimizing shrub parameters representing sagebrush (Artemisia spp.) ecosystems in the northern Great Basin using the Ecosystem Demography (EDv2.2) model
Karun Pandit, Hamid Dashti, Nancy F. Glenn, Alejandro N. Flores, Kaitlin C. Maguire, Douglas J. Shinneman, Gerald N. Flerchinger, and Aaron W. Fellows
Geosci. Model Dev., 12, 4585–4601, https://doi.org/10.5194/gmd-12-4585-2019,https://doi.org/10.5194/gmd-12-4585-2019, 2019
Short summary
Cited articles  
Aichner, B., Herzschuh, U., Wilkes, H., Vieth, A., and Böhner, J.: δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes – A surface sediment study and application to a 16 ka record from Lake Koucha, Org. Geochem., 41, 779–790, https://doi.org/10.1016/j.orggeochem.2010.05.010, 2010.
Asmussen, P., Conrad, O., Günther, A., Kirsch, M., and Riller, U.: Semi-automatic segmentation of petrographic thin section images using a "seeded-region growing algorithm" with an application to characterize wheathered subarkose sandstone, Comput. Geosci., https://doi.org/10.1016/j.cageo.2015.05.001, in press, 2015.
Bechtel, B.: Multitemporal Landsat data for urban heat island assessment and classification of local climate zones, in: Urban Remote Sensing Event (JURSE), 2011 Joint, Presented at the Urban Remote Sensing Event (JURSE), 2011 Joint, IEEE, 129–132, https://doi.org/10.1109/JURSE.2011.5764736, 2011a.
Bechtel, B.: Multisensorale Fernerkundungsdaten zur mikroklimatischen Beschreibung und Klassifikation urbaner Strukturen, Photogramm.-Fernerkund.-Geoinformation, 2011, 325–338, 2011b.
Bechtel, B.: Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes, IEEE Geosci. Remote Sens. Lett., 9, 876–880, https://doi.org/10.1109/LGRS.2012.2185034, 2012.
Publications Copernicus
Download
Short summary
The System for Automated Geoscientific Analyses (SAGA) is a comprehensive and globally established open source geographic information system (GIS) for scientific analysis and modeling. The current version 2.1.4 offers more than 700 tools that represent the broad scopes of SAGA in numerous fields of geoscientific endeavor. In this paper, we inform about the system’s architecture and functionality and highlight the wide spectrum of scientific applications of SAGA in a review of published studies.
The System for Automated Geoscientific Analyses (SAGA) is a comprehensive and globally...
Citation