Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 7
Geosci. Model Dev., 8, 2067–2078, 2015
https://doi.org/10.5194/gmd-8-2067-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 2067–2078, 2015
https://doi.org/10.5194/gmd-8-2067-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 13 Jul 2015

Development and technical paper | 13 Jul 2015

Experiences with distributed computing for meteorological applications: grid computing and cloud computing

F. Oesterle et al.
Related authors  
Subsiding shells and the distribution of up- and downdraughts in warm cumulus clouds over land
Christian Mallaun, Andreas Giez, Georg J. Mayr, and Mathias W. Rotach
Atmos. Chem. Phys., 19, 9769–9786, https://doi.org/10.5194/acp-19-9769-2019,https://doi.org/10.5194/acp-19-9769-2019, 2019
Short summary
Bivariate Gaussian models for wind vectors in a distributional regression framework
Moritz N. Lang, Georg J. Mayr, Reto Stauffer, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, https://doi.org/10.5194/ascmo-5-115-2019,https://doi.org/10.5194/ascmo-5-115-2019, 2019
Short summary
Low-visibility forecasts for different flight planning horizons using tree-based boosting models
Sebastian J. Dietz, Philipp Kneringer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 101–114, https://doi.org/10.5194/ascmo-5-101-2019,https://doi.org/10.5194/ascmo-5-101-2019, 2019
Short summary
Skewed logistic distribution for statistical temperature post-processing in mountainous areas
Manuel Gebetsberger, Reto Stauffer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 87–100, https://doi.org/10.5194/ascmo-5-87-2019,https://doi.org/10.5194/ascmo-5-87-2019, 2019
Short summary
NWP-based lightning prediction using flexible count data regression
Thorsten Simon, Georg J. Mayr, Nikolaus Umlauf, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 1–16, https://doi.org/10.5194/ascmo-5-1-2019,https://doi.org/10.5194/ascmo-5-1-2019, 2019
Short summary
Related subject area  
Atmospheric Sciences
Validation of lake surface state in the HIRLAM v.7.4 numerical weather prediction model against in situ measurements in Finland
Laura Rontu, Kalle Eerola, and Matti Horttanainen
Geosci. Model Dev., 12, 3707–3723, https://doi.org/10.5194/gmd-12-3707-2019,https://doi.org/10.5194/gmd-12-3707-2019, 2019
Short summary
An optimization for reducing the size of an existing urban-like monitoring network for retrieving an unknown point source emission
Hamza Kouichi, Pierre Ngae, Pramod Kumar, Amir-Ali Feiz, and Nadir Bekka
Geosci. Model Dev., 12, 3687–3705, https://doi.org/10.5194/gmd-12-3687-2019,https://doi.org/10.5194/gmd-12-3687-2019, 2019
Short summary
Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02
Katherine R. Travis and Daniel J. Jacob
Geosci. Model Dev., 12, 3641–3648, https://doi.org/10.5194/gmd-12-3641-2019,https://doi.org/10.5194/gmd-12-3641-2019, 2019
Short summary
The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0)
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019,https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of surface nitric acid, nitrate, and ammonium over the United States
Gan Luo, Fangqun Yu, and James Schwab
Geosci. Model Dev., 12, 3439–3447, https://doi.org/10.5194/gmd-12-3439-2019,https://doi.org/10.5194/gmd-12-3439-2019, 2019
Short summary
Cited articles  
Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I. T., Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., and Tuecke, S.: Data management and transfer in high-performance computational Grid environments, Parallel Comput., 28, 749–771, 2002.
Barstad, I. and Schüller, F.: An extension of Smith's linear theory of orographic precipitation: introduction of vertical layers, J. Atmos. Sci., 68, 2695–2709, 2011.
Berger, M., Zangerl, T., and Fahringer, T.: Analysis of overhead and waiting time in the EGEE production Grid, in: Proceedings of the Cracow Grid Workshop, 2008, 287–294, 2009.
Berriman, G. B., Deelman, E., Juve, G., Rynge, M., and Vöckler, J.-S.: The application of cloud computing to scientific workflows: a study of cost and performance, Philos. T. R. Soc. A., 371, 20120066, https://doi.org/10.1098/rsta.2012.0066, 2013.
Blanco, C., Cofino, A. S., and Fernandez-Quiruelas, V.: WRF4SG: a scientific gateway for climate experiment workflows, Geophys. Res. Abstr., EGU2013-11535, EGU General Assembly 2013, Vienna, Austria, 2013.
Publications Copernicus
Download
Short summary
Three practical meteorological applications with different characteristics highlight the core computer science aspects and applicability of distributed computing to meteorology. Presenting cloud and grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance computing concepts.
Three practical meteorological applications with different characteristics highlight the core...
Citation