Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2203-2015
https://doi.org/10.5194/gmd-8-2203-2015
Model description paper
 | 
23 Jul 2015
Model description paper |  | 23 Jul 2015

The integrated Earth system model version 1: formulation and functionality

W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt

Related authors

Identifying Atmospheric Rivers and their Poleward Latent Heat Transport with Generalizable Neural Networks: ARCNNv1
Ankur Mahesh, Travis O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William Collins
EGUsphere, https://doi.org/10.5194/egusphere-2023-763,https://doi.org/10.5194/egusphere-2023-763, 2023
Short summary
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020,https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Characterization of extreme precipitation within atmospheric river events over California
S. Jeon, Prabhat, S. Byna, J. Gu, W. D. Collins, and M. F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, https://doi.org/10.5194/ascmo-1-45-2015,https://doi.org/10.5194/ascmo-1-45-2015, 2015
Short summary
Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation
D. R. Feldman, W. D. Collins, and J. L. Paige
Geosci. Model Dev., 8, 1943–1954, https://doi.org/10.5194/gmd-8-1943-2015,https://doi.org/10.5194/gmd-8-1943-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024,https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Subgrid-scale variability of cloud ice in the ICON-AES 1.3.00
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110, https://doi.org/10.5194/gmd-17-3099-2024,https://doi.org/10.5194/gmd-17-3099-2024, 2024
Short summary
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024,https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
The 4DEnVar-based weakly coupled land data assimilation system for E3SM version 2
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040, https://doi.org/10.5194/gmd-17-3025-2024,https://doi.org/10.5194/gmd-17-3025-2024, 2024
Short summary
Continental-scale bias-corrected climate and hydrological projections for Australia
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024,https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary

Cited articles

Bond-Lamberty, B., Calvin, K., Jones, A. D., Mao, J., Patel, P., Shi, X. Y., Thomson, A., Thornton, P., and Zhou, Y.: On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model, Geosci. Model Dev., 7, 2545–2555, https://doi.org/10.5194/gmd-7-2545-2014, 2014.
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico, F., Pongratz, J., and Weiss, M.: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century, J. Climate, 26, 6859–6881, https://doi.org/10.1175/JCLI-D-12-00623.1, 2013.
Calvin, K. V.: GCAM Wiki Documentation, available at: https://wiki.umd.edu/gcam/ (last access: 21 August 2012), 2011.
CCSP: The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity, a Report by the US Climate Change Science Program and the Subcommittee on Global Change Research, edited by: Backlund, P., Janetos, A., Schimel, D., Hatfield, J., Boote, K., Fay, P., Hahn, L., Izaurralde, C., Kimball, B. A., Mader, T., Morgan, J., Ort, D., Polley, W., Thomson, A., Wolfe, D., Ryan, M., Archer, S., Birdsey, R., Dahm, C., Heath, L., Hicke, J., Hollinger, D., Huxman, T., Okin, G., Oren, R., Randerson, J., Schlesinger, W., Lettenmaier, D., Major, D., Poff, L., Running, S., Hansen, L., Inouye, D., Kelly, B. P., Meyerson, L., Peterson, B., and Shaw, R., US Environmental Protection Agency, Washington, D.C., 362 pp., 2008.
Chaturvedi, V., Kim, S., Smith, S. J., Clarke, L., Yuyu, Z., Kyle, P., and Patel, P.: Model evaluation and hindcasting: An experiment with an integrated assessment model, Energy, 61, 479–490, https://doi.org/10.1016/j.energy.2013.08.061, 2013.
Download
Short summary
The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human-climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. By introducing heretofore-omitted feedbacks between natural and societal drivers in iESM, we can improve scientific understanding of the human-Earth system dynamics.