Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2379-2015
https://doi.org/10.5194/gmd-8-2379-2015
Development and technical paper
 | 
04 Aug 2015
Development and technical paper |  | 04 Aug 2015

A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741)

I. Gouttevin, M. Lehning, T. Jonas, D. Gustafsson, and M. Mölder

Related authors

Seasonal Snow-Atmosphere Modeling: Let's do it
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
EGUsphere, https://doi.org/10.5194/egusphere-2024-489,https://doi.org/10.5194/egusphere-2024-489, 2024
Short summary
Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024,https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
Microclimate mapping using novel radiative transfer modelling
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024,https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Exploring the potential of forest snow modelling at the tree and snowpack layer scale
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2781,https://doi.org/10.5194/egusphere-2023-2781, 2023
Short summary
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2071,https://doi.org/10.5194/egusphere-2023-2071, 2023
Short summary

Related subject area

Cryosphere
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024,https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024,https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024,https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024,https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023,https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary

Cited articles

ACIA: Arctic Climate Impact Assessment, Cambridge University Press, available at: http://www.acia.uaf.edu (last access: 27 July 2015), 2005.
Adams, R., Spittlehouse, D., and Winkler, R.: The effect of a canopy on the snowmelt energy balance, in: Proceedings of the 64th Annual Meeting Western Snow Conference, 171–174, 1996.
Axelsson, B. and Ågren, G.: Tree growth model (PT 1) a development paper, Swedish Coniferous Forest Project Internal Report, Swedish University of Agricultural Sciences, Uppsala, 1976.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, 2002.
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014.
Download
Short summary
We improve the canopy module of a very detailed snow model, SNOWPACK, with a view of a more consistent representation of the sub-canopy energy balance with regard to the snowpack. We show that adding a formulation of (i) the canopy heat capacity and (ii) a lowermost canopy layer (alike trunk + solar shaded leaves) yields significant improvement in the representation of sub-canopy incoming long-wave radiations, especially at nighttime. This energy is an important contributor to snowmelt.