Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 10
Geosci. Model Dev., 8, 3021–3031, 2015
https://doi.org/10.5194/gmd-8-3021-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3021–3031, 2015
https://doi.org/10.5194/gmd-8-3021-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 02 Oct 2015

Development and technical paper | 02 Oct 2015

Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models

R. G. Anderson et al.

Related authors

Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019,https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions
R. G. Anderson, D. Wang, R. Tirado-Corbalá, H. Zhang, and J. E. Ayars
Hydrol. Earth Syst. Sci., 19, 583–599, https://doi.org/10.5194/hess-19-583-2015,https://doi.org/10.5194/hess-19-583-2015, 2015
Short summary

Related subject area

Hydrology
TIER version 1.0: an open-source Topographically InformEd Regression (TIER) model to estimate spatial meteorological fields
Andrew J. Newman and Martyn P. Clark
Geosci. Model Dev., 13, 1827–1843, https://doi.org/10.5194/gmd-13-1827-2020,https://doi.org/10.5194/gmd-13-1827-2020, 2020
Short summary
Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0)
Zhen Yin, Sebastien Strebelle, and Jef Caers
Geosci. Model Dev., 13, 651–672, https://doi.org/10.5194/gmd-13-651-2020,https://doi.org/10.5194/gmd-13-651-2020, 2020
Short summary
glmGUI v1.0: an R-based graphical user interface and toolbox for GLM (General Lake Model) simulations
Thomas Bueche, Marko Wenk, Benjamin Poschlod, Filippo Giadrossich, Mario Pirastru, and Mark Vetter
Geosci. Model Dev., 13, 565–580, https://doi.org/10.5194/gmd-13-565-2020,https://doi.org/10.5194/gmd-13-565-2020, 2020
Short summary
The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview
Christopher B. Marsh, John W. Pomeroy, and Howard S. Wheater
Geosci. Model Dev., 13, 225–247, https://doi.org/10.5194/gmd-13-225-2020,https://doi.org/10.5194/gmd-13-225-2020, 2020
Short summary
Solver for Hydrologic Unstructured Domain (SHUD): Numerical modeling of watershed hydrology with the finite volume method
Lele Shu, Paul A. Ullrich, and Christopher J. Duffy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-354,https://doi.org/10.5194/gmd-2019-354, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) – Model, J. Irrig. Drain. Eng., 133, 380–394, 2007.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007.
Anderson, R. G., Lo, M.-H., and Famiglietti, J. S.: Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation, Geophys. Res. Lett., 39, L16401, https://doi.org/10.1029/2012GL052400, 2012.
Ayars, J. E.: Adapting Irrigated Agriculture to Drought in the San Joaquin Valley of California, in Drought in Arid and Semi-Arid Regions, edited by: Schwabe, K., Albiac, J., Connor, J. D., Hassan, R. M., and Meza González, L., 25–39, Springer Netherlands, Dordrecht, 2013.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation, J. Hydrol., 212/213, 198–212, 1998.
Publications Copernicus
Download
Short summary
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology. Approaches to include irrigation in LSMs are based on either potentially outdated irrigation inventory data or soil moisture curves that are not constrained by regional water balances. We use satellite remote sensing of actual ET and groundwater depletion to develop recent estimates of regional irrigation data. Remote sensing parameterizations of irrigation improve model performance.
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology....
Citation