Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 10
Geosci. Model Dev., 8, 3021–3031, 2015
https://doi.org/10.5194/gmd-8-3021-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3021–3031, 2015
https://doi.org/10.5194/gmd-8-3021-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 02 Oct 2015

Development and technical paper | 02 Oct 2015

Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models

R. G. Anderson et al.
Related authors  
Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019,https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions
R. G. Anderson, D. Wang, R. Tirado-Corbalá, H. Zhang, and J. E. Ayars
Hydrol. Earth Syst. Sci., 19, 583–599, https://doi.org/10.5194/hess-19-583-2015,https://doi.org/10.5194/hess-19-583-2015, 2015
Short summary
Related subject area  
Hydrology
MELPF version 1: Modeling Error Learning based Post-Processor Framework for Hydrologic Models Accuracy Improvement
Rui Wu, Lei Yang, Chao Chen, Sajjad Ahmad, Sergiu M. Dascalu, and Frederick C. Harris Jr.
Geosci. Model Dev., 12, 4115–4131, https://doi.org/10.5194/gmd-12-4115-2019,https://doi.org/10.5194/gmd-12-4115-2019, 2019
Short summary
Beo v1.0: numerical model of heat flow and low-temperature thermochronology in hydrothermal systems
Elco Luijendijk
Geosci. Model Dev., 12, 4061–4073, https://doi.org/10.5194/gmd-12-4061-2019,https://doi.org/10.5194/gmd-12-4061-2019, 2019
Short summary
A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States
Jiali Wang, Cheng Wang, Vishwas Rao, Andrew Orr, Eugene Yan, and Rao Kotamarthi
Geosci. Model Dev., 12, 3523–3539, https://doi.org/10.5194/gmd-12-3523-2019,https://doi.org/10.5194/gmd-12-3523-2019, 2019
Short summary
r.sim.terrain 1.0: a landscape evolution model with dynamic hydrology
Brendan Alexander Harmon, Helena Mitasova, Anna Petrasova, and Vaclav Petras
Geosci. Model Dev., 12, 2837–2854, https://doi.org/10.5194/gmd-12-2837-2019,https://doi.org/10.5194/gmd-12-2837-2019, 2019
Short summary
The probabilistic hydrological MARCSHYDRO (the MARkov Chain System) model: its structure and core version 0.2
Elena Shevnina and Andrey Silaev
Geosci. Model Dev., 12, 2767–2780, https://doi.org/10.5194/gmd-12-2767-2019,https://doi.org/10.5194/gmd-12-2767-2019, 2019
Short summary
Cited articles  
Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) – Model, J. Irrig. Drain. Eng., 133, 380–394, 2007.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007.
Anderson, R. G., Lo, M.-H., and Famiglietti, J. S.: Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation, Geophys. Res. Lett., 39, L16401, https://doi.org/10.1029/2012GL052400, 2012.
Ayars, J. E.: Adapting Irrigated Agriculture to Drought in the San Joaquin Valley of California, in Drought in Arid and Semi-Arid Regions, edited by: Schwabe, K., Albiac, J., Connor, J. D., Hassan, R. M., and Meza González, L., 25–39, Springer Netherlands, Dordrecht, 2013.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation, J. Hydrol., 212/213, 198–212, 1998.
Publications Copernicus
Download
Short summary
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology. Approaches to include irrigation in LSMs are based on either potentially outdated irrigation inventory data or soil moisture curves that are not constrained by regional water balances. We use satellite remote sensing of actual ET and groundwater depletion to develop recent estimates of regional irrigation data. Remote sensing parameterizations of irrigation improve model performance.
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology....
Citation