Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 8, issue 10 | Copyright
Geosci. Model Dev., 8, 3071-3104, 2015
https://doi.org/10.5194/gmd-8-3071-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 06 Oct 2015

Model description paper | 06 Oct 2015

ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation

G. Forget et al.
Related authors
On the observability of turbulent transport rates by Argo: supporting evidence from an inversion experiment
G. Forget, D. Ferreira, and X. Liang
Ocean Sci., 11, 839-853, https://doi.org/10.5194/os-11-839-2015,https://doi.org/10.5194/os-11-839-2015, 2015
Related subject area
Oceanography
A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1)
Marco van Hulten, Jean-Claude Dutay, and Matthieu Roy-Barman
Geosci. Model Dev., 11, 3537-3556, https://doi.org/10.5194/gmd-11-3537-2018,https://doi.org/10.5194/gmd-11-3537-2018, 2018
Veros v0.1 – a fast and versatile ocean simulator in pure Python
Dion Häfner, René Løwe Jacobsen, Carsten Eden, Mads R. B. Kristensen, Markus Jochum, Roman Nuterman, and Brian Vinter
Geosci. Model Dev., 11, 3299-3312, https://doi.org/10.5194/gmd-11-3299-2018,https://doi.org/10.5194/gmd-11-3299-2018, 2018
Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)
Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney, and Bénédicte Ferré
Geosci. Model Dev., 11, 1849-1871, https://doi.org/10.5194/gmd-11-1849-2018,https://doi.org/10.5194/gmd-11-1849-2018, 2018
Verification of the mixed layer depth in the OceanMAPS operational forecast model
Daniel Boettger, Robin Robertson, and Gary B. Brassington
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-69,https://doi.org/10.5194/gmd-2018-69, 2018
Revised manuscript accepted for GMD
OpenDrift v1.0: a generic framework for trajectory modelling
Knut-Frode Dagestad, Johannes Röhrs, Øyvind Breivik, and Bjørn Ådlandsvik
Geosci. Model Dev., 11, 1405-1420, https://doi.org/10.5194/gmd-11-1405-2018,https://doi.org/10.5194/gmd-11-1405-2018, 2018
Cited articles
Adcroft, A. and Campin, J.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, 2004.
Adcroft, A., Hill, C., and Marshall, J.: A new treatment of the Coriolis terms in C-grid models at both high and low resolutions, Mon. Weather Rev., 127, 1928–1936, 1999.
Adcroft, A., Campin, J.-M., Hill, C., and Marshall, J.: Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube, Mon. Weather Rev., 132, 2845–2863, https://doi.org/10.1175/MWR2823.1, 2004a.
Adcroft, A., Hill, C., Campin, J.-M., Marshall, J., and Heimbach, P.: Overview of the formulation and numerics of the MITGCM, in: Proceedings of the ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, 139–149, ECMWF, available at: http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf (last access: 29 April 2015), 2004b.
Andersen, O. B. and Knudsen, P.: DNSC08 mean sea surface and mean dynamic topography models, J. Geophys. Res.-Oceans, 114, C11001, https://doi.org/10.1029/2008JC005179, 2009.
Publications Copernicus
Download
Short summary
The ECCO v4 non-linear inverse modeling framework and its reference solution are made publicly available. The inverse estimate of ocean physics and atmospheric forcing yields a dynamically consistent and global state estimate without unidentified sources of heat and salt that closely fits in situ and satellite data. Any user can reproduce it accurately. Parametric and external model uncertainties are of comparable magnitudes and generally exceed structural model uncertainties.
The ECCO v4 non-linear inverse modeling framework and its reference solution are made publicly...
Citation
Share