Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 10
Geosci. Model Dev., 8, 3179–3198, 2015
https://doi.org/10.5194/gmd-8-3179-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3179–3198, 2015
https://doi.org/10.5194/gmd-8-3179-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 08 Oct 2015

Methods for assessment of models | 08 Oct 2015

Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints

K. C. Wells et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Kelley Wells on behalf of the Authors (14 Sep 2015)  Author's response    Manuscript
ED: Publish as is (17 Sep 2015) by Olaf Morgenstern
Publications Copernicus
Download
Short summary
This paper introduces a new inversion framework for N2O using GEOS-Chem and its adjoint, which we employed in a series of observing system simulation experiments to evaluate the source and sink constraints provided by surface and aircraft-based N2O measurements. We also applied a new approach for estimating a posteriori uncertainty for high-dimensional inversions, and used it to quantify the spatial and temporal resolution of N2O emission constraints achieved with the current observing network.
This paper introduces a new inversion framework for N2O using GEOS-Chem and its adjoint, which...
Citation