Simulation of atmospheric N\textsubscript{2}O with GEOS-Chem and its adjoint: evaluation of observational constraints

K. C. Wells1, D. B. Millet1, N. Bousserez2, D. K. Henze2, S. Chaliyakunnel1, T. J. Griffis1, Y. Luan1, E. J. Dlugokencky3, R. G. Prinn4, S. O’Doherty5, R. F. Weiss6, G. S. Dutton3,7, J. W. Elkins3, P. B. Krummel8, R. Langenfelds3,7, L. P. Steele8, E. A. Kort9, S. C. Wofsy10, and T. Umezawa11,12

1Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
2Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
3Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
4Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
5School of Chemistry, University of Bristol, Bristol, UK
6Scripps Institute of Oceanography, University of California, La Jolla, California, USA
7CIRES, University of Colorado, Boulder, Colorado, USA
8CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria, Australia
9Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA
10School of Engineering and Applied Science and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
11Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai, Japan
12Max-Planck Institute for Chemistry, Mainz, Germany

Correspondence to: D. B. Millet (dbm@umn.edu)

Received: 27 May 2015 – Published in Geosci. Model Dev. Discuss.: 8 July 2015
Revised: 14 September 2015 – Accepted: 17 September 2015 – Published: 8 October 2015

Abstract. We describe a new 4D-Var inversion framework for nitrous oxide (N\textsubscript{2}O) based on the GEOS-Chem chemical transport model and its adjoint, and apply it in a series of observing system simulation experiments to assess how well N\textsubscript{2}O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N\textsubscript{2}O measurements (hourly averages used) from several long-term monitoring networks, N\textsubscript{2}O measurements collected from discrete air samples onboard a commercial aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; CARIBIC), and quasi-continuous measurements from the airborne HIAPER Pole-to-Pole Observations (HIPPO) campaigns. For a 2-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N\textsubscript{2}O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N\textsubscript{2}O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink.

Published by Copernicus Publications on behalf of the European Geosciences Union.
in locations near and immediately upwind of surface measurements and the HIPPO flight tracks; however, these are mostly confined to North America, Europe, and Australia. None of the current observing networks are able to provide significant spatial information on tropical \(\text{N}_2\text{O} \) emissions. There, averaging kernels (describing the sensitivity of the inversion to emissions in each grid square) are highly smeared spatially and extend even to the midlatitudes, so that tropical emissions risk being conflated with those elsewhere. For global inversions, therefore, the current lack of constraints on the tropics also places an important limit on our ability to understand extratropical emissions. Based on the error reduction statistics from the inverse Hessian, we characterize the atmospheric distribution of unconstrained \(\text{N}_2\text{O} \), and identify regions in and downwind of South America, central Africa, and Southeast Asia where new surface or profile measurements would have the most value for reducing present uncertainty in the global \(\text{N}_2\text{O} \) budget.

1 Introduction

Nitrous oxide (\(\text{N}_2\text{O} \)) is a long-lived greenhouse gas with a global warming potential approximately 300 times that of \(\text{CO}_2 \) on a 100-year timescale (Forster et al., 2007). It is also a key player in stratospheric chemistry; \(\text{N}_2\text{O} \) emissions weighted by their ozone depletion potential currently outrank those of any other ozone depleting substance (Ravishankara et al., 2009). \(\text{N}_2\text{O} \) is produced via microbial nitrification and denitrification in soils (Firestone and Davidson, 1989) and ocean waters (Elkins et al., 1978; Cohen and Gordon, 1979; Law and Owens, 1990), with soils contributing the majority of the global flux (Mosier et al., 1998). Agricultural activities such as fertilizer application and animal waste management increase the substrate available for nitrification and denitrification pathways (Maggioletto et al., 2000), leading to enhanced direct on-site emissions as well as indirect emissions downstream due to leaching and runoff (IPCC, 2006). Energy production and transportation (Dennan et al., 2007) and biomass burning emissions (van der Werf et al., 2010) also contribute to the global \(\text{N}_2\text{O} \) source. \(\text{N}_2\text{O} \) is lost in the stratosphere via photolysis and reaction with \(\text{O}^\text{(1D)} \), leading to a global lifetime currently estimated at \(\sim 122–131 \) years (Volk et al., 1997; Prather et al., 2012). Atmospheric \(\text{N}_2\text{O} \) is currently increasing at \(\sim 0.8 \) ppbv year\(^{-1} \) (http://ds.data.jma.go.jp/gmd/wdcgg/pub/global/globalmean.html), driven by accelerating human perturbation of the nitrogen cycle: in particular, rising application of nitrogen fertilizers (Galloway et al., 2008; Davidson, 2009; Park et al., 2012) and the nonlinear response of soil \(\text{N}_2\text{O} \) emissions to \(\text{N} \) inputs in excess of crop demands (Schotterer et al., 2014).

Rates of microbial nitrification and denitrification in soils depend strongly on environmental characteristics such as temperature (Potter et al., 1996), moisture (Bouwman, 1998; Bouwman et al., 2013), availability of reactive nitrogen sub-
In this paper, we introduce a new simulation and inversion framework for atmospheric N$_2$O using the GEOS-Chem chemical transport model (CTM) and its adjoint. The adjoint-based variational method is advantageous as it allows us to solve for N$_2$O fluxes at the spatial resolution of the CTM and at any desired time step, thus minimizing any impact from aggregation errors. Here, we apply the model in a simulation environment (i.e., in observing system simulation experiments, or OSSEs) to quantify the N$_2$O source and sink constraints provided by (i) flask and quasi-continuous surface observations from a number of long-term monitoring networks; (ii) routine flask observations from an instrument platform deployed onboard a commercial aircraft (CARIBIC); and (iii) in situ airborne observations made during a series of intensive pole-to-pole field campaigns (HIPPO). This is the first study to quantify the individual constraints provided by these different observation ensembles. We determine the potential for model errors in the stratospheric loss rate of N$_2$O to bias the inferred emission estimates, and assess how well N$_2$O emissions and stratospheric loss can be simultaneously constrained by the above observations. We evaluate the temporal and spatial resolution of emission constraints afforded by the different N$_2$O observations, and explore the impact of uncertainties in the a priori error estimates on the inferred fluxes. Finally, we apply the above information to identify regions that are under-constrained by the current N$_2$O observing network, and the downwind locations where new measurements would be most valuable for reducing current uncertainty in the N$_2$O budget.

2 N$_2$O simulation in the GEOS-Chem CTM

In this work we implement an N$_2$O simulation in the GEOS-Chem (http://www.geos-chem.org) global 3-D model of atmospheric chemistry. Analyses presented here use assimilated meteorological data from the NASA Goddard Earth Observing System (GEOS-5), degraded to a horizontal resolution of 4$^\circ$ latitude × 5$^\circ$ longitude and to a vertical grid containing 47 levels from the surface to 0.01 hPa. Transport is calculated on a 30 min time step; a 60 min time step is used for emissions and chemistry. Our simulation period runs from April 2010 to April 2012.

A priori N$_2$O emissions are grouped into four categories: anthropogenic (including industrial processes, transportation, residential/waste management, and agricultural activities), natural soil fluxes, biomass burning, and oceanic exchange. Annual emissions for anthropogenic activities are obtained from the Emission Database for Global Atmospheric Research (EDGARv4.2; http://edgar.jrc.ec.europa.eu). Within this database there are 12 emission sectors as defined by the IPCC (IPCC, 2006). These sectors are listed in Table 1, along with the corresponding total emissions for 2008. The overall anthropogenic N$_2$O flux from EDGARv4.2 is 6.9 Tg N year$^{-1}$, with 2.4 Tg N year$^{-1}$ from industrial and residential sources and 4.5 Tg N year$^{-1}$ from direct and indirect agricultural emissions. Natural soil emissions of N$_2$O are computed based on the EDGARv2 database, which provides an annual flux at 1$^\circ$ × 1$^\circ$ resolution for the year 1990 totaling 3.2 Tg N year$^{-1}$. Biomass burning emissions of N$_2$O are prescribed monthly based on the Global Fire Emissions Database version 3 (GFEDv3; van der Werf et al., 2010) and total 0.6 Tg N year$^{-1}$ for 2010–2011. Thermal and biogeochemical oceanic fluxes of N$_2$O are calculated monthly at 4.5$^\circ$ × 3.75$^\circ$ following Jin and Gruber (2003), leading to a net annual global source of 3.5 Tg N year$^{-1}$. Figure 1 maps the resulting annual flux from soils, industrial activities, biomass burning, and air–sea exchange, with a cumulative annual global source of 14.2 Tg N year$^{-1}$. We note that this is below the range of current top–down flux estimates (~16 to 20 Tg N year$^{-1}$) discussed previously.

Stratospheric destruction of N$_2$O by photolysis and reaction with O(1D) is calculated using archived monthly 3-D loss frequencies from Global Modeling Initiative (GMI) simulations driven by Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields (MERRA is also based on GEOS-5). The resulting stratospheric loss gives rise to a 127.5 year lifetime, which is in the range of current estimates (122–131 years, Volk et al., 1997; Prather et al., 2012). This lifetime depends upon the initial mass distribution assumed for N$_2$O, which we describe below.

Because of the long atmospheric lifetime of N$_2$O, generating realistic initial conditions is of critical importance for top–down analyses of its sources and sinks. Some previous studies have included initial conditions as part of the state vector for optimization, or prescribed N$_2$O mass fields from
differences and a penalty term:

\(J(p) = \frac{1}{2} \sum_{c \in \Omega} (c - y)^T S_y^{-1} (c - y) \)

\[+ \frac{1}{2} \nu (p - p_a)^T S_a^{-1} (p - p_a). \]

(1)

Here, \(p \) is the vector of parameters to be optimized, \(p_a \) is the initial (a priori) value of those parameters, \(y \) is a set of observations, \(c \) is a vector containing the model-simulated concentrations, \(S_y \) and \(S_a \) are the observational and a priori error covariance matrices, respectively, \(\Omega \) is the time and space domain of the observations, and \(\nu \) is a regularization parameter (set here to 1.0).

In this study, \(p \) contains monthly scaling factors for the terrestrial and oceanic emissions of \(\text{N}_2\text{O} \) and for stratospheric loss frequencies. The adjoint model calculates the gradient of the cost function with respect to this state vector, \(\nabla_p J(p) \), and employs a quasi-Newton minimization routine to iteratively minimize \(J(p) \) (Zhu et al., 1994; Byrd et al., 1995). Scale factors for emissions are optimized on the \(4^\circ \times 5^\circ \) GEOS-Chem grid, while those for the stratospheric loss frequencies are aggregated over the vertical extent of the stratosphere and into eight latitude bands of 22.5°. For the 2-year inversion, this results in a state vector with 79,488 elements for emissions and 192 elements for stratospheric loss. We use a lower bound of zero in the optimization routine to avoid a solution containing negative scaling factors and an upper bound of 10 that was found to improve optimization performance. Use of the lower bound corresponds to an implicit assumption that the sign of the a priori \(\text{N}_2\text{O} \) flux in each location is correct, while the upper bound assumes that the a priori emissions are not biased low by more than a factor of

Table 1. \(\text{N}_2\text{O} \) emissions in the a priori database and their global annual totals.

<table>
<thead>
<tr>
<th>Sector</th>
<th>IPCC code</th>
<th>Global annual source (Tg N year(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural soil(^a)</td>
<td>4C + 4D</td>
<td>3.97</td>
</tr>
<tr>
<td>Indirect emissions from agriculture(^a)</td>
<td>4D3</td>
<td>0.57</td>
</tr>
<tr>
<td>Energy manufacturing transformation(^a)</td>
<td>1A1 + 1A2 + 1B1b</td>
<td>0.21</td>
</tr>
<tr>
<td>Non-road transportation(^a)</td>
<td>1A3a + c + d + e</td>
<td>5.0 \times 10^{-2}</td>
</tr>
<tr>
<td>Road transportation(^a)</td>
<td>1A3b</td>
<td>0.14</td>
</tr>
<tr>
<td>Oil production and refineries(^a)</td>
<td>1B2a</td>
<td>4.2 \times 10^{-3}</td>
</tr>
<tr>
<td>Industrial process and product use(^a)</td>
<td>2</td>
<td>0.85</td>
</tr>
<tr>
<td>Fossil fuel fires(^a)</td>
<td>7A</td>
<td>4.8 \times 10^{-4}</td>
</tr>
<tr>
<td>Manure management(^a)</td>
<td>4B</td>
<td>0.21</td>
</tr>
<tr>
<td>Residential(^a)</td>
<td>1A4</td>
<td>0.18</td>
</tr>
<tr>
<td>Waste solid and waste water(^a)</td>
<td>3</td>
<td>0.24</td>
</tr>
<tr>
<td>Indirect (\text{N}_2\text{O}) from (\text{NO}_x) and (\text{NH}_3)^(^a)</td>
<td>7B + 7C</td>
<td>0.45</td>
</tr>
<tr>
<td>Total anthropogenic(^a)</td>
<td></td>
<td>6.9</td>
</tr>
<tr>
<td>Total natural(^b)</td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>Total biomass burning(^c)</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Total net ocean(^d)</td>
<td></td>
<td>3.5</td>
</tr>
</tbody>
</table>

\(^a\) From EDGARv4.2 for 2008. \(^b\) From EDGARv2 for 1990. \(^c\) From GFEDv3 (van der Weer et al., 2010). \(^d\) From Jin and Gruber (2003). simulations that have reached a pseudo steady state. We instead construct an initial 3-D \(\text{N}_2\text{O} \) field using global observations for March 2010 (Fig. 2), 1 month prior to the start of our optimization window. This timing is chosen to accommodate a brief model spin-up that smooths any artificial horizontal gradients prescribed in the initial conditions. Initial tropospheric concentrations are computed from NOAA Carbon Cycle and Greenhouse Gases (CCGG) flask observations (described below) averaged monthly and zonally at 4° resolution. These mixing ratios are then assumed uniform from the surface to the tropopause. Above 100 hPa, our initial conditions are based on monthly mean (March 2010) \(\text{N}_2\text{O} \) profiles measured by the Microwave Limb Sounder (MLS) onboard the EOS Aura satellite (Lambert et al., 2007) interpolated onto the GEOS-Chem horizontal and vertical grid. Where needed, we then perform a linear interpolation between the tropopause and 100 hPa.

3 Inversion setup and verification

We use a 4D-Var inversion framework to solve for spatially resolved, monthly \(\text{N}_2\text{O} \) fluxes based on the atmospheric measurements described next (Sect. 4). Optimal fluxes are derived by minimizing the cost function, \(J(p) \), which contains contributions from the error-weighted model–measurement differences and a penalty term:
Such bounds are not problematic for the synthetic experiments presented here, but would affect real inversions if those assumptions were violated.

We assume 100 % uncertainty in the a priori emissions (for any given grid square and month) and in the stratospheric loss frequencies, and impose horizontal correlation length scales for emissions of 500 km over land and 1000 km over ocean, following Thompson et al. (2011, 2014a). The observational error covariance matrix contains contributions from the measurement uncertainty (typically 0.4 ppb; see next section for details) and from model transport errors. We estimate the latter from the variance in modeled N\n\n2O mixing ratios across all grid boxes adjacent to that containing a given observation. This results in mean errors of 0.2 ppb at the surface and 2–8 ppb at aircraft cruising altitudes.

The adjoint modules for optimizing N\n\n2O emissions and stratospheric loss were verified by comparing adjoint and finite difference sensitivities calculated for each atmospheric column with no horizontal transport. We find good agreement between adjoint and finite difference sensitivities for both emissions and stratospheric loss scaling factors (Fig. S1 in the Supplement), demonstrating the accuracy of the N\n\n2O adjoint code. Propagation of adjoint sensitivities through horizontal transport in the GEOS-Chem adjoint has been verified previously (Henze et al., 2007). The GEOS-Chem adjoint has been used for a wide range of research applications, such as constraining sources of aerosols (Henze et al., 2007, 2009; Kopacz et al., 2011; Wang et al., 2012; Xu et al., 2013), CO (Kopacz et al., 2009, 2010), NH\n\n3 (Zhu et al., 2013), O\n\n3 (Zhang et al., 2009; Parrington et al., 2012), and methanol (Wells et al., 2014), and to assess the impact of different types of observations on CO source inversions (Jiang et al., 2011, 2013).

4 Global observations of atmospheric N\n\n2O

Below, we apply GEOS-Chem and its adjoint to assess the N\n\n2O source and sink constraints provided by the current suite of global observations. We include in this assessment several long-term surface monitoring networks and two aircraft platforms. A full list of the surface observation sites can be found in Table 2, and their locations are mapped in Fig. 3. The majority of the surface observations are from discrete air samples collected approximately weekly in flasks at 77 sites in the NOAA CCGG program (Dlugokencky et al., 1994), which are analyzed using a gas chromatograph with an electron capture detector and reported on the NOAA 2006A calibration scale. We also use flask measurements from six sites in the Commonwealth Scientific and Industrial Research Organisation (CSIRO) network (also on the NOAA 2006A scale; Franeey et al., 1996; Cooper et al., 1999), five sites in the Environment Canada (EC) network (NOAA 2006 scale), and one National Institute of Water and Atmospheric research (NIWA) site (NOAA 2006A scale). We assume a measurement uncertainty of 0.4 ppb for all of the above flask measurements, based on recommendations from the data providers. Hourly averages of quasi-continuous measurements are employed from six sites in the NOAA Chromatograph for Atmospheric Trace Species (CATS) network, six sites in the Advanced Global Atmospheric Gases Experiment (AGAGE) network (Prinn et al., 2000), and the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower, MB, USA; 44.68° N, 93.07° W) site (Griffis et al., 2013). Measurements from the AGAGE network are reported on the SIO-98 scale, and have a reported uncertainty of 0.2 % (0.6 ppb). Measurements at the KCMP tall tower and those in the CATS network (both on the NOAA 2006A scale) have uncertainties of about 1.0 and 0.3 ppb, respectively.

Extensive airborne measurements of N\n\n2O are available from the CARIBIC observatory (Breninkmeijer et al., 2007). CARIBIC provides flask measurements from a commercial Lufthansa aircraft, with data available for 79 flights between Frankfurt, Germany, and a number of other cities around the world (Fig. 3) during the time period of our optimization. These observations have an uncertainty of about 0.35 ppb and are reported on the NOAA 2006 scale (Schuck et al., 2009). Since the CARIBIC observatory is operated on a passenger aircraft, the majority of measurements are taken at a cruising altitude of 9–12 km: about 50 % are in the lowermost stratosphere (in general those at higher latitudes, depending on synoptic conditions), with the remainder sampling the upper troposphere (Assonov et al., 2013; Umezawa et al., 2014).
Table 2. Sites of surface flask and in situ N₂O observations used in this study.

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Network*</th>
<th>Measurement type</th>
<th>Measurement scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival Heights, Antarctica</td>
<td>−78.90</td>
<td>166.67</td>
<td>NIWA</td>
<td>Flask</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Alert, Nunavut, Canada</td>
<td>82.45</td>
<td>−62.51</td>
<td>CCGG</td>
<td>Flask</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Argyle, Maine, USA</td>
<td>45.04</td>
<td>−68.68</td>
<td>CCGG</td>
<td>Flask</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Ascension Island</td>
<td>−7.97</td>
<td>−14.40</td>
<td>CCGG</td>
<td>Flask</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Assekerem, Algeria</td>
<td>23.26</td>
<td>5.63</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Terceira Island, Azores</td>
<td>38.77</td>
<td>−27.38</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Baltic Sea, Poland</td>
<td>55.35</td>
<td>17.22</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Boulder Atmospheric Observatory, Colorado, USA</td>
<td>40.05</td>
<td>−105.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Baring Head, New Zealand</td>
<td>−41.41</td>
<td>174.87</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Bukit Kototabang, Indonesia</td>
<td>−0.20</td>
<td>100.32</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>St. David’s Head, Bermuda</td>
<td>32.37</td>
<td>−64.65</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Tudor Hill, Bermuda</td>
<td>32.27</td>
<td>−64.88</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Barrow, Alaska, USA</td>
<td>71.32</td>
<td>−156.61</td>
<td>CCGG, CATS</td>
<td>Flame, in situ</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Black Sea, Constanta, Romania</td>
<td>44.18</td>
<td>26.87</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Cold Bay, Alaska, USA</td>
<td>55.21</td>
<td>−162.72</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Cape Ferguson, Australia</td>
<td>−19.24</td>
<td>147.05</td>
<td>CSIRO</td>
<td>Flask</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Cape Grim, Tasmania, Australia</td>
<td>−40.68</td>
<td>144.69</td>
<td>CCGG, AGAGE</td>
<td>Flame, in situ</td>
<td>NOAA 2006A, SIO-98</td>
</tr>
<tr>
<td>Churchill, Manitoba, Canada</td>
<td>58.75</td>
<td>−94.07</td>
<td>EC</td>
<td>Flame</td>
<td>NOAA 2006</td>
</tr>
<tr>
<td>Christmas Island</td>
<td>1.30</td>
<td>−157.15</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Cape Rama, India</td>
<td>15.08</td>
<td>75.38</td>
<td>CSIRO</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Crozet Island</td>
<td>−46.43</td>
<td>51.85</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Casey Station, Antarctica</td>
<td>−66.28</td>
<td>110.53</td>
<td>CSIRO</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Drake Passage</td>
<td>−59.00</td>
<td>−64.69</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Easter Island</td>
<td>−27.16</td>
<td>−109.43</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Estevan Point, British Columbia, Canada</td>
<td>49.38</td>
<td>−126.55</td>
<td>EC</td>
<td>Flame</td>
<td>NOAA 2006</td>
</tr>
<tr>
<td>East Trout Lake, Saskatchewan, Canada</td>
<td>54.33</td>
<td>−104.98</td>
<td>EC</td>
<td>Flame</td>
<td>NOAA 2006</td>
</tr>
<tr>
<td>Fraserdale, Ontario, Canada</td>
<td>49.88</td>
<td>−81.57</td>
<td>EC</td>
<td>Flame</td>
<td>NOAA 2006</td>
</tr>
<tr>
<td>Martiana Islands, Guam</td>
<td>13.39</td>
<td>144.66</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Gunn Point, Australia</td>
<td>−12.25</td>
<td>131.05</td>
<td>CSIRO</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Halley Station, Antarctica</td>
<td>−75.61</td>
<td>−26.21</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Hohenpeissenberg, Germany</td>
<td>47.80</td>
<td>11.02</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Hegyhátsék, Hungary</td>
<td>46.95</td>
<td>16.65</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Stórhófði, Vestmannaeyjar, Iceland</td>
<td>63.40</td>
<td>−20.29</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Ižana, Tenerife, Canary Islands</td>
<td>28.31</td>
<td>−16.50</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Jungfraujoch, Switzerland</td>
<td>46.55</td>
<td>7.99</td>
<td>AGAGE</td>
<td>In situ</td>
<td>SIO-98</td>
</tr>
<tr>
<td>Key Biscayne, Florida, USA</td>
<td>25.67</td>
<td>−80.16</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Cape Kumukahi, Hawaii, USA</td>
<td>19.52</td>
<td>−154.82</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Park Falls, Wisconsin, USA</td>
<td>45.95</td>
<td>−90.27</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Lac La Biche, Alberta, Canada</td>
<td>54.95</td>
<td>−112.45</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Lulin, Taiwan</td>
<td>23.47</td>
<td>120.87</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Lampedusa, Italy</td>
<td>35.52</td>
<td>12.62</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Mawson Station, Antarctica</td>
<td>−67.62</td>
<td>62.87</td>
<td>CSIRO</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Mace Head, Ireland</td>
<td>53.33</td>
<td>−9.90</td>
<td>CCGG, AGAGE</td>
<td>Flame, in situ</td>
<td>NOAA 2006A, SIO-98</td>
</tr>
<tr>
<td>Sand Island, Mayan Islands</td>
<td>28.21</td>
<td>177.38</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Mt. Kenya, Kenya</td>
<td>−0.06</td>
<td>37.30</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Mauna Loa, Hawaii, USA</td>
<td>19.54</td>
<td>−155.58</td>
<td>CCGG, CATS</td>
<td>Flame, in situ</td>
<td>NOAA 2006A, NOAA 2006A</td>
</tr>
<tr>
<td>Macquarie Island, Australia</td>
<td>−54.48</td>
<td>158.97</td>
<td>CSIRO</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Gobabeh, Namibia</td>
<td>−23.58</td>
<td>15.03</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Niwot Ridge, Colorado, USA</td>
<td>40.05</td>
<td>−105.55</td>
<td>CCGG, CATS</td>
<td>Flame, in situ</td>
<td>NOAA 2006A, NOAA 2006A</td>
</tr>
<tr>
<td>Ochsenkopf, Germany</td>
<td>50.03</td>
<td>11.81</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pallas–Sammalhautunturi, Finland</td>
<td>67.97</td>
<td>24.12</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, Equator</td>
<td>0.00</td>
<td>−155.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 5° N</td>
<td>5.00</td>
<td>−151.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 10° N</td>
<td>10.00</td>
<td>−149.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 15° N</td>
<td>15.00</td>
<td>−145.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 20° N</td>
<td>20.00</td>
<td>−141.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 25° N</td>
<td>25.00</td>
<td>−139.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 30° N</td>
<td>30.00</td>
<td>−135.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 5° S</td>
<td>−5.00</td>
<td>−159.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 10° S</td>
<td>−10.00</td>
<td>−161.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 15° S</td>
<td>−15.00</td>
<td>−171.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 20° S</td>
<td>−20.00</td>
<td>−174.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 25° S</td>
<td>−25.00</td>
<td>−171.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 30° S</td>
<td>−30.00</td>
<td>−176.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
<tr>
<td>Pacific Ocean, 35° S</td>
<td>−35.00</td>
<td>−180.00</td>
<td>CCGG</td>
<td>Flame</td>
<td>NOAA 2006A</td>
</tr>
</tbody>
</table>
High-frequency airborne N_2O measurements were made by quantum cascade laser spectroscopy (QCLS) during the HIPPO campaigns (Wofsy, 2011; flight tracks mapped in Fig. 3). Three of the five HIPPO deployments took place during our optimization window: HIPPO III (24 March–16 April 2010), HIPPO IV (14 June–11 July 2011), and HIPPO V (9 August–9 September 2011), totaling 33 flights over the April 2010–April 2012 time frame. Measurements are reported on the NOAA 2006 scale (Kort et al., 2011). The HIPPO flights range from pole-to-pole while profiling the atmosphere from the surface to the tropopause at regular intervals. Unlike the other available data sets, which provide recurrent measurements at discrete locations or along specific flight paths, the HIPPO data sets provide ~1-month global cross sections of atmospheric concentration.

The use of different calibration scales results in offsets between different networks measuring N_2O, which may also vary with time. Because variability in atmospheric N_2O is low, these offsets can have a significant impact on the a posteriori solution. As the results presented here involve synthetic observations at the time and location of the real observations, we do not consider the impact of these offsets on inferred N_2O emissions and stratospheric loss. However, for inversions employing real N_2O measurements, we calculate offsets at collocated sites to adjust those measurements that are not reported on the NOAA 2006A scale.

5 Evaluating constraints on N_2O emissions and stratospheric loss using pseudo observations

In this section we perform a range of pseudo observation tests to determine how well N_2O sources (and sinks) can be quantified, and at what space–time resolution, based on the observing network described above. In these tests, we sample the model at the time and location of each observation to generate pseudo observations. A subset of tests were carried out with observational (measurement + transport) noise added to the synthetic observations, and these yielded the same results as the tests with no noise. We then perform a 2-year inversion in which we assimilate pseudo observations generated for the surface network, CARIBIC flights, or HIPPO flights. Our state vector contains monthly scaling factors for emissions, stratospheric loss frequencies, or both. We start with a spatially uniform incorrect a priori value for these scaling factors; this bias is temporally uniform in most tests, though later we also test the impact of a seasonally varying emission bias. The degree to which the optimization converges to the true value of 1.0 for each grid cell and month gives a measure of the ability of the observations to correct for model biases in these processes. Section 5.1 presents tests in which we optimize emissions using the three observational data sets, Sect. 5.2 contains tests in which we optimize stratospheric loss frequencies alone or jointly with emissions, and Sect. 5.3 describes tests in which we optimize emissions with...
5. Constraints on N₂O emissions

Figure 4 shows the results of synthetic inversions in which we optimize emissions using surface-based pseudo observations as described above. Here we impose a time invariant a
priori emission bias of ±50% across all land and ocean grid cells, while keeping the stratospheric loss rates fixed at their true model values. We see that for the first ∼20 months of the optimization window, the surface-based inversion is able to correct the imposed bias over most land and ocean regions that have a significant flux. However, we will show later that this does not mean current observations can fully constrain the spatial distribution of N₂O emissions at the 4° × 5° resolution shown in Fig. 4.

Overall, the solution is of comparable quality whether we start with a high or low a priori bias, with some minor distinctions: the test with the positive initial bias performs slightly better over oceans and in later months of the simulation, and also converges more quickly (5 iterations versus 10 for the test with a low initial bias). However, the situation is very different when no upper bound is imposed on the solution. In this case, when given a low initial bias the optimization tends to overshoot the truth in high-flux regions while under-
estimating the truth in low-flux regions. Imposing both lower
and upper bounds on the inverse solution (in this case, 0 and
10) is thus important to ensure a consistent solution across
high and low initial bias scenarios.

Figure 4 also indicates that during the last several months
of the optimization window there is inadequate forcing for
the inversion to completely correct for the initial emission
biases, particularly over the Southern Hemisphere. This is
largely due to the timescale required to transport N\textsubscript{2}O
between source regions and receptor locations – in the Southern
Hemisphere observing stations are sparse and distant from
major N\textsubscript{2}O sources. As a result, there are relatively few sub-
sequent observations that are influenced by biases imposed
towards the end of the optimization window.

Figure 5 shows zonally integrated, annual a poste-
riori emissions from synthetic inversions using surface,
CARIBIC, or HIPPO pseudo observations. In each case the
state vector for optimization includes monthly emission scale
factors on the model grid (but not stratospheric loss rates),
and an initial bias of ±50 % is applied to emissions in all grid
boxes. Results are shown only for the first year of the opti-
mization period since (as shown) the inversion has less ability
to retrieve the true emissions in the succeeding months; there
are also no HIPPO observations during the last 6 months of
the simulation. As discussed, the surface data provide a good
correction to the imposed a priori error in N\textsubscript{2}O emissions
when starting with both high and low initial biases, and can
accurately retrieve zonally integrated emissions in the North-
ern and Southern hemispheres.

We see in Fig. 5 that inversions based on the HIPPO data
are also able to capture the zonal distribution of N\textsubscript{2}O em-
sions. For the high-bias test (a priori emissions scaling fac-
tor of 1.5), the inversion results are very similar to those ob-
tained using the surface data. For the low-bias test, the a pos-
teriori emissions retain a low bias over the Southern Ocean,
and overshoot slightly where emissions peak in both hemi-
spheres. On the other hand, the CARIBIC measurements lead
to substantially different a posteriori fluxes between the high-
and low-bias tests: the inversion with the high initial bias
returns the true zonal distribution of emissions quite well, whereas
the test with the low initial bias leads to an overes-
timate of emissions from 20 to 30° N and an underestimate
elsewhere. We find through these tests that each data set can
independently resolve the global annual flux to within 5 % of
the true value (Table 3).

Based on these experiments, we conclude that relatively
sparse observations in the upper troposphere and lowermost
stratosphere, such as those from CARIBIC, are sufficient
to correct a priori bias in the global annual N\textsubscript{2}O emissions, but
do not provide as robust a constraint on the zonal distribution
of those emissions. The pole-to-pole HIPPO observations,
with their extensive vertical profiling from the upper

troposphere to the boundary layer, provide a stronger con-
straint on the zonal distribution of annual emissions despite
the fact that they do not cover the full time period of our opti-
mization. This is because the long lifetime of N\textsubscript{2}O allows
emissions perturbations to impact concentrations far from
source regions 2–6 months after the perturbation (Thom-
son et al., 2014a). Of the three networks examined here (sur-
face, CARIBIC, and HIPPO) in isolation, the regular surface
measurements provide the best correction of annual emission
biases.

The above OSSEs were performed based on an initial frac-
tional emission bias that is uniform in space and time (i.e., a

\begin{table}[h]
\centering
\begin{tabular}{ll|cc|c}
\hline
Observations & State vector & Initial bias & A posteriori flux (Tg N year-1)a & A posteriori sink (Tg N year-1)b \\
\hline
Surface & Emissions & 0.5, 1.5 & 14.16, 14.25 & – \\
CARIBIC & Emissions & 0.5, 1.5 & 13.82, 14.72 & – \\
HIPPO & Emissions & 0.5, 1.5 & 14.12, 14.27 & – \\
Surface & Emissions + strat. loss frequencies & 0.5, 1.5 & 14.04, 14.84 & 7.73, 24.91 \\
CARIBIC & Emissions + strat. loss frequencies & 0.5, 1.5 & 13.63, 15.40 & 6.13, 19.72 \\
HIPPO & Emissions + strat. loss frequencies & 0.5, 1.5 & 14.00, 14.74 & 7.65, 22.60 \\
Surface & Strat. loss frequencies & 0.5, 1.5 & 12.02, 12.93 & – \\
CARIBIC & Strat. loss frequencies & 0.5, 1.5 & 10.09, 14.66 & – \\
HIPPO & Strat. loss frequencies & 0.5, 1.5 & 10.60, 13.99 & – \\
CARIBIC (no transport error) & Emissions + strat. loss frequencies & 0.5 & 14.16 & 9.94 \\
HIPPO (no transport error) & Emissions + strat. loss frequencies & 0.5 & 14.14 & 11.39 \\
CARIBIC (no transport error) & Strat. loss frequencies & 0.5 & 11.57 & – \\
HIPPO (no transport error) & Strat. loss frequencies & 0.5 & 12.03 & – \\
Surface & Emissions & Seasonal & 13.63 & – \\
CARIBIC & Emissions & Seasonal & 13.59 & – \\
HIPPO & Emissions & Seasonal & 13.44 & – \\
\hline
\end{tabular}
\caption{Global annual N\textsubscript{2}O a posteriori source for all pseudo observation tests.}
\end{table}
An important finding from previous work is that stratospheric loss of \(\text{N}_2 \) \(\text{O} \) has a limited lifetime of \(\text{N}_2 \) \(\text{O} \) (given known surface fluxes (with the limited information on the spatial and temporal distribution of the derived scaling factors for \(\text{N}_2 \) \(\text{O} \) when both the source and sink are optimized simultaneously, and given an initial 50 % low bias for each. In these tests, the sink does not return to the true value (Table 3); for the inversions using CARIBIC and HIPPO it actually moves slightly in the opposite direction (i.e., further from the truth than the a priori) due to the forcing imposed by the source bias. In other words, the inversion is not able to resolve a bias in \(\text{N}_2 \) \(\text{O} \) emissions from a bias in the sink. Despite this behavior, the spatial distribution of the derived scaling factors for \(\text{N}_2 \) \(\text{O} \) emissions (not shown) closely matches that obtained with a fixed (“true”) stratospheric sink, and the annual a posteriori emission flux is within 5 % of the truth (Table 3) for all tests except the high-bias test using CARIBIC pseudo data. Therefore, on the 1–2 year timescale of our optimization, and given accurate initial conditions (in our case, based on interpolated measurements), the forcing provided by the surface and aircraft data used here is dominated by \(\text{N}_2 \) \(\text{O} \) emissions. As a result, a

5.2 Stratospheric loss of \(\text{N}_2 \) \(\text{O} \): constraints from the observing network and impact on source inversions

An important finding from previous work is that \(\text{N}_2 \) \(\text{O} \) emissions set everywhere to 0.5 \(\times \) or 1.5 \(\times \) the true model values. As we will see later, emission biases that vary in space or time are much more difficult to resolve, due to the sparse observing network combined with the long atmospheric lifetime of \(\text{N}_2 \) \(\text{O} \).
model bias of up to 50% in the stratospheric loss frequencies for N\textsubscript{2}O will have a minimal impact on the inferred emissions given the inversion framework employed here.

Thompson et al. (2011) also examined the feasibility of constraining stratospheric loss rates of N\textsubscript{2}O using aircraft observations, but assumed zero model transport error in the observational error covariance matrix. We find that proper treatment of this error has a dramatic effect on the ability of the inversion framework to simultaneously retrieve emissions and stratospheric loss rates of N\textsubscript{2}O. In the tests above, the model transport error was estimated based on the variance in N\textsubscript{2}O mixing ratios in the grid boxes adjacent to an observation; for aircraft observations near the tropopause, this variability can be an order of magnitude larger than it is near the surface. We find that when we omit the model transport error, the inversion is able to reduce an imposed prior bias in both emissions and stratospheric loss simultaneously, even when those biases have opposing effects on the N\textsubscript{2}O burden. As observed above, the same is not true when transport error is accounted for. Our ability to quantify both the emissions and chemistry of N\textsubscript{2}O based on aircraft data therefore depends critically on the accuracy of vertical transport in the model, and on the associated transport error assigned in the inversion. Tracer measurements and correlations from platforms such as CARIBIC can be useful for evaluating this.

Along with the rate of N\textsubscript{2}O destruction in the stratosphere, another factor that can affect N\textsubscript{2}O source inversions is model uncertainty in the mass flux of air between the stratosphere and troposphere (e.g., Thompson et al., 2014b). Our model framework, employing assimilated meteorology, is not equipped to include this process directly as part of the state vector for optimization. However, we can explore the relative influence of chemistry versus stratosphere-troposphere mixing on the tropospheric N\textsubscript{2}O burden (and hence on N\textsubscript{2}O source inversions) with the aid of a simple two-box model representing stratospheric and tropospheric reservoirs of N\textsubscript{2}O. Such an analysis does not capture seasonal effects, distinct STE mechanisms operating on different timescales, or spatial gradients within the troposphere and stratosphere, but nonetheless does illustrate some key features of the system.

Figure 7 shows the fractional perturbations to the stratospheric and tropospheric burdens of N\textsubscript{2}O in the box model that result from (i) a 20% increase in the global N\textsubscript{2}O emission source \(E\), (ii) a 20% decrease in the photochemical loss rate of N\textsubscript{2}O \(k_{chem}\), and (iii) a 20% decrease in the
stratosphere–troposphere exchange rates (k_{ST} and k_{TS}). For the latter, mass fluxes in both directions are increased proportionately since the (annual, global) k_{ST}/k_{TS} ratio is known from the relative sizes of the troposphere and stratosphere.

The top panel of Fig. 7 shows that on long timescales a perturbation to k_{ST} and k_{TS} has a negligible effect on the tropospheric N$_2$O burden compared to a perturbation to k_{chem} or E. A given change in k_{chem} or E leads to a similar relative change in the steady-state burden, with an adjustment timescale dictated by the N$_2$O lifetime (~ 127 years). In comparison, the effect of a change to k_{TS} and k_{ST} is small in the troposphere. For stratospheric N$_2$O, the effect of k_{TS} and k_{ST} is somewhat larger and of opposite sign: decreasing k_{TS} and k_{ST} reduces stratospheric N$_2$O while increasing tropospheric N$_2$O.

However, on short timescales (as is used for our inversions), the importance of stratosphere–troposphere exchange versus chemistry for tropospheric N$_2$O is reversed, as the former manifests more quickly. The bottom panel of Fig. 7 indicates that for the first 2 years following a perturbation, the effect of k_{TS} and k_{ST} on the tropospheric N$_2$O burden is 1.3–29 \times larger (mean: 5.1 \times) than the effect of k_{chem}. Over this same time period, Fig. 7 also shows that the effect of a perturbation to k_{TS} and k_{ST} is significant (mean: 0.8 \times) relative to a change in E. However, the importance of k_{TS} and k_{ST} versus E will be overstated by the box model as it does not resolve spatial gradients within the troposphere or the location of observations relative to emissions.

Overall, we can see that N$_2$O source inversions based on the framework employed here will be unaffected by even relatively large model biases in the chemical loss rate of N$_2$O. The same does not apply to model biases in STE, and these need to be accounted for when evaluating a posteriori source estimates for N$_2$O (Thompson et al., 2014b) and other long-lived species such as CO$_2$ (Deng et al., 2015).

5.3 Temporal resolution of N$_2$O source inversions

The OSSEs in Sect. 5.1 and 5.2 demonstrate that the inversion (and N$_2$O observing network) has a strong ability to remove model emission biases that are uniform in space and time. However, actual model emission errors are likely to be spatially and temporally dependent. For example, while the a priori natural soil and anthropogenic emissions used here are aseasonal, observations over an agricultural field in Ontario, Canada, indicate that 30–90 % of the annual flux occurs in the non-growing season, mostly as strong pulses driven by soil thawing (Wagner-Riddle et al., 2007). Likewise, analysis of tall tower observations suggest a strong seasonal cycle of soil N$_2$O emissions associated with the timing of fertilizer application (Miller et al., 2012; Griffis et al., 2013). A key question, therefore, is the following: at what spatial and temporal resolution can global N$_2$O emissions be quantified based on the current observing network?

To explore the temporal aspect of this question, we performed a test in which we assimilate pseudo observations generated with aseasonal (model truth) emissions, while imposing a simple seasonal bias in the a priori emissions from natural and agricultural soils (50 % higher than model truth from March–August; 50 % lower from September–February). As before, we assimilate surface, CARIBIC, or HIPPO observations, and retrieve monthly scaling factors for terrestrial and oceanic N$_2$O emissions.

Results of this test indicate that a seasonal, global, emission bias is much more difficult to resolve than is a constant bias based on the current network of surface observations. Zonally integrated emissions (Fig. S2) begin to approach the aseasonal model truth in the Northern Hemisphere during the beginning of the simulation (when the a priori emissions are biased high), but there is almost no correction of the seasonal bias in the latter half of the simulation (when a priori emissions are biased low). Due to the long lifetime of N$_2$O, any residual high emission bias from the first portion of the simulation leads to positive model–measurement residuals even after the emission bias changes sign. Globally, the result is an annual flux that is biased slightly low ($\sim 5 \%$; Table 3) and with incorrect seasonality.

In areas near measurement sites, however, some seasonal constraints are afforded in the inversion. For example, Fig. 8 shows monthly fluxes at four locations: a site with contin-
The spatial resolution at which current measurements constrain global N$_2$O emissions in this inversion framework can be inferred from the reduction in emission errors that results from the assimilation. Here, we calculate this relative error reduction from a stochastic estimate of the inverse Hessian of the cost function (Eq. 1). For a reasonably linear model, the inverse Hessian approximates the a posteriori error covariance matrix of the emissions, and can be written

$$\left(\nabla^2 J(x)\right)^{-1} = \left(S^{-1}_a + H^T S^{-1}_y H\right)^{-1} \approx S_{\text{post}},$$

(2)

where H is the tangent linear of the forward model, S_{post} is the a posteriori error covariance matrix, and S_a and S_y are the a priori and observational error covariance matrices, respectively, as in Eq. (1). Following Bousserez et al. (2015), we estimate $\nabla^2 J(x)$ using an ensemble (500 members here) of stochastic cost function gradients, each generated by adding Gaussian random noise to the pseudo observations according to the reported uncertainty of each data set. The reduction in $S_{\text{post}}(i, j)$ relative to $S_a(i, j)$ for any model grid cell (i, j) then represents the ability of our observing system to remove a random emission error in that location, in the absence of any large-scale source bias.

Figure 9 shows the resulting percent error reduction achieved in each model grid cell using surface, CARIBIC, or HIPPO observations for a given month of our 2-year simulation. Results using surface observations are shown for month 1 (April 2010), but are comparable for all subsequent months. We see appreciable error reduction near sites with continuous observations in North America and Europe, and more modest error reductions in surrounding grid cells, at sites with flask observations, and in the northern Atlantic upwind of Europe. There is little (<5%) error reduction achieved throughout the tropics, Southern Hemisphere, and high latitudes, except near Cape Grim, Australia, where continuous observations are available. The spatial distribution of the error reduction results is similar to the spatial distribution of scaling factor adjustments in a pseudo observation inversion in which a spatially random bias has been applied (not shown).

Figure 9 also shows that the sparse, high altitude CARIBIC observations provide limited information on the spatial distribution of N$_2$O emissions. Significant error reduction is achieved over western Europe during April 2010, the only month in which measurements were taken in the lower troposphere during special flights dedicated to volcano observation (Rauthe-Schöch et al., 2012). In all other months, measurements occur primarily in the upper troposphere and lower stratosphere and consequently the spatial error reduction is minor (typically < 1%).

The spatial information provided by HIPPO observations varies by month according to the flight tracks, and is complementary to that achieved with surface data. For example, during August 2011, we see large error reductions over the cen-
Error reduction (%) in N$_2$O emissions achievable in selected months using surface (a), CARIBIC (b), and HIPPO (c and d) measurements. An inset shows regional detail for the CARIBIC results. The relative error reduction is calculated based on a stochastic estimate of the inverse Hessian of the cost function for the inversion, and represents the ability of the observing system to remove a random emission error for each given location in the absence of any large-scale source bias.

Central USA, as well as some improvement for grid cells in East Asia that are upwind of the HIPPO flight track. Some error reduction is also achieved in these locations for May 2011, despite the fact that no HIPPO flights occurred during this month (the next flights occurred in June). Given the long lifetime of N$_2$O, measurements in a given month thus provide some location-specific constraints on emissions in prior months. As is the case with the surface observations, however, the HIPPO data provide very little error reduction for emissions throughout the tropics, Southern Hemisphere and high latitudes. While the OSSE tests above showed that our observation and adjoint framework has significant skill in removing uniform model emission biases, we see in Fig. 9 that our current ability to allocate those N$_2$O emissions spatially around the globe is in fact severely limited relative to the 4° × 5° model resolution used here – and this is true for the airborne as well as the ground-based data sets.

Based on the same stochastic approach used above to calculate the inverse Hessian, we can also calculate the averaging kernel of the inversion. The averaging kernel measures the sensitivity of the inversion to emissions in any given grid square; we can thus use it to determine how well emissions in a given location can be independently resolved from emissions elsewhere. If emissions in one location are completely resolved from those in other grid boxes, the averaging kernel value will be 1.0 in that location and 0 everywhere else. Here, we calculate the averaging kernel rows (based on the surface observations only) for a selected group of locations in key emission regions that vary in their proximity to N$_2$O measurement sites.

Figure 10 shows the results for the same four locations shown in Fig. 8: KCMP tall tower (MN, USA), Hegyhátsál (Hungary), East China, and DR Congo. KCMP features continuous observations, Hegyhátsál (averaging kernel value ∼0.3), where weekly flask observations are available, though some spatial smearing is apparent. Weaker constraints (averaging kernel values up to ∼0.03) are achieved in the vicinity of the East China grid box, likely provided by downwind observations in Korea and the western Pacific.

Averaging kernel values for the central African location are very low (∼10$^{-3}$), indicating little to no constraint on the source flux, and are also highly smeared spatially, showing that the current surface observations of N$_2$O do not allow emissions in that region to be independently resolved from emissions elsewhere across the globe. We see in Fig. 10 that this spatial smearing even extends to the midlatitudes in both hemispheres. Emissions in the under-constrained tropics thus risk being conflated with those in other, distant source regions in global inversion analyses.

The implications of this current lack of constraints on tropical N$_2$O emissions can be seen in a sample global inversion
based on real atmospheric data. Figure 11 shows a posteriori emission scaling factors for global inversions based on two different assumptions: the first uses our previous construction of the a priori error covariance matrix (100% uncertainty with horizontal correlation length scales of 500 km over land and 1000 km over ocean); the other does not include any penalty term (measuring the departure from a priori conditions) in the cost function. When a priori constraints are included, the solution is relatively spatially smooth. To correct for a low bias in our a priori emissions inventory, emissions increase throughout those terrestrial and oceanic regions where emissions occur, with a slightly higher inferred flux over South America. Conversely, when we eliminate the a priori constraint, emissions increase strongly in the tropics and Southern Hemisphere, reaching a factor of 10 (the upper bound placed on the scaling factors) in South America near the beginning of the 2-year simulation. To compensate for this, the inferred emissions throughout the Northern Hemisphere decrease dramatically.

This severe sensitivity of the solution to the a priori error assumption reflects the ill-posed nature of the problem. It also highlights the fact that, because the global N₂O flux is constrained (as the N₂O lifetime and atmospheric burden are reasonably well-known), the lack of constraint on tropical emissions has important implications for understanding emissions elsewhere in the world.

5.5 Identifying priority locations for future N₂O measurements

In this section, we apply the error reduction statistics derived above to identify priority regions where new observations are likely to have high value for improving present understanding of global N₂O sources. To that end, we carry out forward model simulations in which N₂O emissions in the first month are scaled by (1 − x), where x is the spatial map of relative error reductions achieved in the inversion on the basis of the surface observations (e.g., Fig. 9). The initial atmospheric burden of N₂O is set to zero, as are the emissions in subsequent months. The resulting atmospheric N₂O then reflects unconstrained emissions, and the distribution of that “unconstrained N₂O” in space and time shows where new observations are needed to quantify those emissions in a spatially explicit way.

Figure 12 shows the distribution of unconstrained N₂O mapped in the first and the second month following its emission. Results are shown for simulations starting in August 2010 and February 2011; these months were chosen to illustrate how seasonal differences in horizontal and vertical transport affect the atmospheric dispersion of unconstrained N₂O emissions. In August, unconstrained mixing ratios above 1 ppb can be found throughout Southeast Asia, central Africa, and South America, with the highest concentrations occurring over Brazil and off the western coasts of Africa and South America. Somewhat elevated concentrations (0.5–1 ppb) persist in these locations for the second month of the simulation, but these become well-dispersed in the following months (not shown). Unconstrained N₂O emitted in August is initially concentrated in the lower troposphere in the tropics and northern mid-latitudes, but is lofted through the tropical troposphere by September. In contrast, unconstrained N₂O emitted in February is more strongly confined to the lower troposphere and the Northern Hemisphere, even a month after emission.

The maps in Fig. 12 rely by necessity on a particular a priori estimate of N₂O emissions and their distribution in space and time. However, they nonetheless provide an assessment of where additional measurements would have the best leverage for improving N₂O emission estimates, based on our existing bottom-up understanding of when and where those emissions occur. We see in the maps that areas over or downwind of the tropics and East Asia should receive the highest measurement priority to reduce uncertainty in the overall N₂O budget. As shown earlier, downwind surface observations can provide some spatially explicit emission constraints for regions with high fluxes; these may be the only feasible option for places where access, infrastructure, or political issues prevent sustained local measurements. We note that additional N₂O measurements are now available in and around Japan (Saikawa et al., 2014) that may provide additional constraints on East Asian emissions not achieved using the measurements presented here. In addition, aircraft measurements during the July–September time frame should have a strong value for constraining fluxes in the tropics, given the lofting and dispersal of those emissions that is apparent in the August 2010 simulation. The value of such measurements was...
We developed a new inversion framework based on the GEOS-Chem model and its adjoint for estimating global N\textsubscript{2}O emissions and stratospheric loss rates using surface (flask and in situ) as well as airborne (CARIBIC; HIPPO) measurements. We used this framework to (i) quantify the ability of the current observing network to constrain the global distribution of N\textsubscript{2}O sources and sinks, (ii) assess the relative utility of the various observing platforms for doing so, and (iii) identify priority locations where measurements are most needed to improve the present understanding of the N\textsubscript{2}O budget. Our simulation period runs from April 2010 to April 2012, with initial conditions constructed using surface flask observations and vertical profile measurements from the MLS satellite sensor.

Observing system simulation experiments (OSSEs) showed that the surface and HIPPO observations can accurately resolve a uniform bias in N\textsubscript{2}O emissions for the first year of a 2-year simulation; in comparison, the sparser (and mostly high altitude) CARIBIC observations provide a weaker constraint. All three data sets are able to independently resolve the global surface flux to within 5\% of the truth. On the other hand, a seasonal emission bias is much more difficult to resolve given the long lifetime of N\textsubscript{2}O, particularly in regions with sparse observations. The surface observations do provide a reduction of seasonal emission errors in the vicinity of measurement sites and in large source regions upwind.

The surface and airborne data sets are all able to resolve a global bias in the stratospheric loss rate of N\textsubscript{2}O given known emissions, but do not give information on the spatial and temporal distribution of that sink. For the more realistic scenario with uncertain N\textsubscript{2}O sources and sink, we find that resolving the two in a joint source–sink inversion would require greater confidence in modeled transport than is currently warranted. Nevertheless, because of the timescale for stratosphere–troposphere mixing, N\textsubscript{2}O source inversions are insensitive to uncertainties in the chemical sink of N\textsubscript{2}O on the 2 year analysis time frame used here (and assuming an accurate initial state; e.g., from interpolated data). However, a simple box model analysis shows that tropospheric N\textsubscript{2}O is more sensitive to uncertainties in the rate of stratosphere–troposphere exchange (STE) than to those in the chemical loss rates for analysis timescales up to \(\sim 3–4\) years. Incomplete knowledge of STE rates will thus be a key source of uncertainty to address for N\textsubscript{2}O source inversions on these timescales.

We employed a stochastic estimate of the inverse Hessian to quantify the spatial resolution of N\textsubscript{2}O emission constraints afforded by the current global network of observations, and the degree to which emissions in a particular location can be distinguished from those elsewhere. Significant location-specific constraints are achieved in grid boxes near and immediately upwind of surface observation loca-

Figure 12. Distribution of unconstrained N\textsubscript{2}O simulated by GEOS-Chem during the month of emission ((a) August 2010 and (b) February 2011) and the subsequent month. Unconstrained concentrations are calculated by scaling emissions for a particular month by \((1-x)\), where \(x\) is the map of emission error reductions achieved using surface observations of N\textsubscript{2}O. The initial atmospheric burden of N\textsubscript{2}O and the emissions in the ensuing months are set to zero in order to highlight the spatial dispersal of unconstrained N\textsubscript{2}O. Note nonlinear color scales.

also pointed out by Kort et al. (2011), who reported observational evidence for lofting of large, episodic tropical emissions. On the other hand, Fig. 12 also reveals large areas of the world’s oceans where additional surface measurements are not likely to provide appreciable new insights into the global N\textsubscript{2}O budget, given the lack of unconstrained N\textsubscript{2}O that is less than 1–2 months from emission.

6 Summary and conclusions

We developed a new inversion framework based on the GEOS-Chem model and its adjoint for estimating global N\textsubscript{2}O emissions and stratospheric loss rates using surface (flask and in situ) as well as airborne (CARIBIC; HIPPO) measurements. We used this framework to (i) quantify the ability of the current observing network to constrain the global distribution of N\textsubscript{2}O sources and sinks, (ii) assess the relative utility of the various observing platforms for doing so, and (iii) identify priority locations where measurements are most needed to improve the present understanding of the N\textsubscript{2}O budget. Our simulation period runs from April 2010 to April 2012, with initial conditions constructed using surface flask observations and vertical profile measurements from the MLS satellite sensor.

Observing system simulation experiments (OSSEs) showed that the surface and HIPPO observations can accurately resolve a uniform bias in N\textsubscript{2}O emissions for the first year of a 2-year simulation; in comparison, the sparser (and mostly high altitude) CARIBIC observations provide a weaker constraint. All three data sets are able to independently resolve the global surface flux to within 5\% of the truth. On the other hand, a seasonal emission bias is much more difficult to resolve given the long lifetime of N\textsubscript{2}O, particularly in regions with sparse observations. The surface observations do provide a reduction of seasonal emission errors in the vicinity of measurement sites and in large source regions upwind.

The surface and airborne data sets are all able to resolve a global bias in the stratospheric loss rate of N\textsubscript{2}O given known emissions, but do not give information on the spatial and temporal distribution of that sink. For the more realistic scenario with uncertain N\textsubscript{2}O sources and sink, we find that resolving the two in a joint source–sink inversion would require greater confidence in modeled transport than is currently warranted. Nevertheless, because of the timescale for stratosphere–troposphere mixing, N\textsubscript{2}O source inversions are insensitive to uncertainties in the chemical sink of N\textsubscript{2}O on the 2 year analysis time frame used here (and assuming an accurate initial state; e.g., from interpolated data). However, a simple box model analysis shows that tropospheric N\textsubscript{2}O is more sensitive to uncertainties in the rate of stratosphere–troposphere exchange (STE) than to those in the chemical loss rates for analysis timescales up to \(\sim 3–4\) years. Incomplete knowledge of STE rates will thus be a key source of uncertainty to address for N\textsubscript{2}O source inversions on these timescales.

We employed a stochastic estimate of the inverse Hessian to quantify the spatial resolution of N\textsubscript{2}O emission constraints afforded by the current global network of observations, and the degree to which emissions in a particular location can be distinguished from those elsewhere. Significant location-specific constraints are achieved in grid boxes near and immediately upwind of surface observation loca-

Figure 12. Distribution of unconstrained N\textsubscript{2}O simulated by GEOS-Chem during the month of emission ((a) August 2010 and (b) February 2011) and the subsequent month. Unconstrained concentrations are calculated by scaling emissions for a particular month by \((1-x)\), where \(x\) is the map of emission error reductions achieved using surface observations of N\textsubscript{2}O. The initial atmospheric burden of N\textsubscript{2}O and the emissions in the ensuing months are set to zero in order to highlight the spatial dispersal of unconstrained N\textsubscript{2}O. Note nonlinear color scales.

also pointed out by Kort et al. (2011), who reported observational evidence for lofting of large, episodic tropical emissions. On the other hand, Fig. 12 also reveals large areas of the world’s oceans where additional surface measurements are not likely to provide appreciable new insights into the global N\textsubscript{2}O budget, given the lack of unconstrained N\textsubscript{2}O that is less than 1–2 months from emission.
tions; however, these are mainly confined to North America, Europe and Australia. For sites with continuous surface observations, local emissions can be unambiguously resolved from those in surrounding locations, as indicated by large error reductions and averaging kernel (AK) values close to 1.0. Flask observations also provide significant local-to-regional constraints (e.g., AK values of ~ 0.3 at a site with weekly measurements). HIPPO observations primarily provide emission constraints for the Central US and East Asia. Critically, little to no spatial information on tropical emissions is provided by either set of observations: the corresponding AKs are highly smeared spatially and show that emissions in many parts of the tropics cannot even be resolved from those in the midlatitudes. For global inversions, this under-constraint in the tropics can thus lead to large errors in the inferred N$_2$O fluxes for the extratropics as well as the tropics themselves.

From the atmospheric distribution of “unconstrained N$_2$O” simulated based on the error reduction statistics achieved in the inversion and our a priori source estimates, we identify areas in the tropics and East Asia as the highest priorities for new N$_2$O measurements to advance understanding of the global budget. In situ or flask observations downwind of major sources in South America, central Africa, and East Asia can provide some spatial information on N$_2$O fluxes in cases where local, long-term measurements are impractical. Targeted aircraft measurements in the troposphere could also provide much-needed constraints on tropical emission fluxes, particularly during July–September when emissions are well-lofted vertically.

From our analysis it is clear that additional measurements are crucial to obtaining a more complete picture of global N$_2$O sources, particularly in the key areas mentioned above. In this context, we will further investigate the use of efficient randomization techniques to estimate the spatiotemporal constraints provided by new and existing N$_2$O measurements, and design optimal dimension approaches for N$_2$O source inversions. Such work could also include an evaluation of information provided by new N$_2$O retrievals from the Atmospheric Infrared Sounder (AIRS) (Xiong et al., 2014) and other space-based infrared sounders. While the vertical sensitivity of such instruments may be insufficient to derive useful direct information on surface emissions, such data could be useful for constraining the N$_2$O profile and its stratosphere–troposphere exchange (thus indirectly improving our ability to diagnose sources). The fact that the current observing system yields little information on the space–time distribution of N$_2$O fluxes over large parts of the world also speaks to the need for process-based emission models that can provide a priori source estimates that faithfully capture the key modes of variability. Such models are also needed to project how soil N$_2$O fluxes will respond to future changes in climate, hydrology, and nitrogen deposition and runoff.

Code availability

The N$_2$O version of the GEOS-Chem adjoint code is available via the GEOS-Chem adjoint repository. Instructions for obtaining access to the code can be found at http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint.

The Supplement related to this article is available online at doi:10.5194/gmd-8-3179-2015-supplement.

Acknowledgements. This work was supported by NOAA (grant no. NA13OAR4310086) and the Minnesota Supercomputing Institute. We thank J. Muhle and C. Harth (UCSD-SIO), D. Young (U. Bristol), P. Fraser (CSIRO), R. Wang (GaTech), and other members of the AGAGE team for providing AGAGE data. The 6 AGAGE stations used here are supported principally by NASA (USA) grants to MIT and SIO, and also by DECC (UK) and NOAA (USA) grants to Bristol University, and by CSIRO and BoM (Australia). We thank Environment Canada for providing data from the Churchill, Estevan Point, East Trout Lake, Fraserdale, and Sable Island sites. We thank R. Martin and S. Nichol for providing data from the Arrival Heights NIWA station.

Edited by: O. Morgenstern

References

Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth rate and distribution of atmospheric carbon monoxide and nitrous oxide from Cape Grim flask enrichments extending the Cape Grim trace gas programs, Baseline Atmospheric Sampling Laboratory (GASLAB): supporting and extending the Cape Grim trace gas programs, Baseline Atmospheric Program (Australia) 1993, 8–29, Bureau of Meteorology and CSIRO division of Atmospheric Research, 1996.

Shecherbak, I., Millar, N., and Robertson, G. P.: Global metanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions

