Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 8, issue 11 | Copyright
Geosci. Model Dev., 8, 3695-3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 17 Nov 2015

Development and technical paper | 17 Nov 2015

A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)

N. Kljun et al.
Related authors
Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)
Jason Beringer, Ian McHugh, Lindsay B. Hutley, Peter Isaac, and Natascha Kljun
Biogeosciences, 14, 1457-1460, https://doi.org/10.5194/bg-14-1457-2017,https://doi.org/10.5194/bg-14-1457-2017, 2017
Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the “Angry Summer” of 2012/2013
Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober, and Richard Silberstein
Biogeosciences, 13, 5947-5964, https://doi.org/10.5194/bg-13-5947-2016,https://doi.org/10.5194/bg-13-5947-2016, 2016
Related subject area
Biogeosciences
Parameter calibration in global soil carbon models using surrogate-based optimization
Haoyu Xu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue
Geosci. Model Dev., 11, 3027-3044, https://doi.org/10.5194/gmd-11-3027-2018,https://doi.org/10.5194/gmd-11-3027-2018, 2018
Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
Werner von Bloh, Sibyll Schaphoff, Christoph Müller, Susanne Rolinski, Katharina Waha, and Sönke Zaehle
Geosci. Model Dev., 11, 2789-2812, https://doi.org/10.5194/gmd-11-2789-2018,https://doi.org/10.5194/gmd-11-2789-2018, 2018
ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition
Ye Huang, Bertrand Guenet, Philippe Ciais, Ivan A. Janssens, Jennifer L. Soong, Yilong Wang, Daniel Goll, Evgenia Blagodatskaya, and Yuanyuan Huang
Geosci. Model Dev., 11, 2111-2138, https://doi.org/10.5194/gmd-11-2111-2018,https://doi.org/10.5194/gmd-11-2111-2018, 2018
Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil
Fabiola Murguia-Flores, Sandra Arndt, Anita L. Ganesan, Guillermo Murray-Tortarolo, and Edward R. C. Hornibrook
Geosci. Model Dev., 11, 2009-2032, https://doi.org/10.5194/gmd-11-2009-2018,https://doi.org/10.5194/gmd-11-2009-2018, 2018
Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content
Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, and Marko Scholze
Geosci. Model Dev., 11, 1517-1536, https://doi.org/10.5194/gmd-11-1517-2018,https://doi.org/10.5194/gmd-11-1517-2018, 2018
Cited articles
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long Term Carbon Dioxide Exchange Above a Mixed Forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, 2001.
Baldocchi, D.: Flux Footprints Within and Over Forest Canopies, Bound.-Lay. Meteorol., 85, 273–292, 1997.
Barcza, Z., Kern, A., Haszpra, L., and Kljun, N.: Spatial Representativeness of Tall Tower Eddy Covariance Measurements Using Remote Sensing and Footprint Analysis, Agr. Forest Meteorol., 149, 795–807, 2009.
Batchvarova, E. and Gryning, S.-E.: Applied Model for the Growth of the Daytime Mixed Layer, Bound.-Lay. Meteorol., 56, 261–274, 1991.
Chang, J. C. and Hanna, S. R.: Air Quality Model Performance Evaluation, Meteorol. Atmos. Phys., 87, 167–196, 2004.
Publications Copernicus
Download
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.
Flux footprint models describe the surface area of influence of a flux measurement. They are...
Citation
Share