Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 8, issue 11
Geosci. Model Dev., 8, 3695-3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3695-3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 17 Nov 2015

Development and technical paper | 17 Nov 2015

A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)

N. Kljun et al.
Related authors
Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)
Jason Beringer, Ian McHugh, Lindsay B. Hutley, Peter Isaac, and Natascha Kljun
Biogeosciences, 14, 1457-1460, https://doi.org/10.5194/bg-14-1457-2017,https://doi.org/10.5194/bg-14-1457-2017, 2017
Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the “Angry Summer” of 2012/2013
Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober, and Richard Silberstein
Biogeosciences, 13, 5947-5964, https://doi.org/10.5194/bg-13-5947-2016,https://doi.org/10.5194/bg-13-5947-2016, 2016
Related subject area
Biogeosciences
A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
HyeJin Kim, Isabel M. D. Rosa, Rob Alkemade, Paul Leadley, George Hurtt, Alexander Popp, Detlef P. van Vuuren, Peter Anthoni, Almut Arneth, Daniele Baisero, Emma Caton, Rebecca Chaplin-Kramer, Louise Chini, Adriana De Palma, Fulvio Di Fulvio, Moreno Di Marco, Felipe Espinoza, Simon Ferrier, Shinichiro Fujimori, Ricardo E. Gonzalez, Maya Gueguen, Carlos Guerra, Mike Harfoot, Thomas D. Harwood, Tomoko Hasegawa, Vanessa Haverd, Petr Havlík, Stefanie Hellweg, Samantha L. L. Hill, Akiko Hirata, Andrew J. Hoskins, Jan H. Janse, Walter Jetz, Justin A. Johnson, Andreas Krause, David Leclère, Ines S. Martins, Tetsuya Matsui, Cory Merow, Michael Obersteiner, Haruka Ohashi, Benjamin Poulter, Andy Purvis, Benjamin Quesada, Carlo Rondinini, Aafke M. Schipper, Richard Sharp, Kiyoshi Takahashi, Wilfried Thuiller, Nicolas Titeux, Piero Visconti, Christopher Ware, Florian Wolf, and Henrique M. Pereira
Geosci. Model Dev., 11, 4537-4562, https://doi.org/10.5194/gmd-11-4537-2018,https://doi.org/10.5194/gmd-11-4537-2018, 2018
Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0
Stefan Kruse, Alexander Gerdes, Nadja J. Kath, and Ulrike Herzschuh
Geosci. Model Dev., 11, 4451-4467, https://doi.org/10.5194/gmd-11-4451-2018,https://doi.org/10.5194/gmd-11-4451-2018, 2018
Carbon–nitrogen coupling under three schemes of model representation: a traceability analysis
Zhenggang Du, Ensheng Weng, Lifen Jiang, Yiqi Luo, Jianyang Xia, and Xuhui Zhou
Geosci. Model Dev., 11, 4399-4416, https://doi.org/10.5194/gmd-11-4399-2018,https://doi.org/10.5194/gmd-11-4399-2018, 2018
EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241-4267, https://doi.org/10.5194/gmd-11-4241-2018,https://doi.org/10.5194/gmd-11-4241-2018, 2018
GOLUM-CNP v1.0: a data-driven modeling of carbon, nitrogen and phosphorus cycles in major terrestrial biomes
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903-3928, https://doi.org/10.5194/gmd-11-3903-2018,https://doi.org/10.5194/gmd-11-3903-2018, 2018
Cited articles
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long Term Carbon Dioxide Exchange Above a Mixed Forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, 2001.
Baldocchi, D.: Flux Footprints Within and Over Forest Canopies, Bound.-Lay. Meteorol., 85, 273–292, 1997.
Barcza, Z., Kern, A., Haszpra, L., and Kljun, N.: Spatial Representativeness of Tall Tower Eddy Covariance Measurements Using Remote Sensing and Footprint Analysis, Agr. Forest Meteorol., 149, 795–807, 2009.
Batchvarova, E. and Gryning, S.-E.: Applied Model for the Growth of the Daytime Mixed Layer, Bound.-Lay. Meteorol., 56, 261–274, 1991.
Chang, J. C. and Hanna, S. R.: Air Quality Model Performance Evaluation, Meteorol. Atmos. Phys., 87, 167–196, 2004.
Publications Copernicus
Download
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.
Flux footprint models describe the surface area of influence of a flux measurement. They are...
Citation
Share