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Abstract. In order to easily enforce solid-wall boundary con-

ditions in the presence of complex coastlines, we propose a

new mass and energy conserving Brinkman penalization for

the rotating shallow water equations. This penalization does

not lead to higher wave speeds in the solid region. The er-

ror estimates for the penalization are derived analytically and

verified numerically for linearized one-dimensional equa-

tions. The penalization is implemented in a conservative dy-

namically adaptive wavelet method for the rotating shallow

water equations on the sphere with bathymetry and coast-

line data from NOAA’s ETOPO1 database. This code could

form the dynamical core for a future global ocean model.

The potential of the dynamically adaptive ocean model is il-

lustrated by using it to simulate the 2004 Indonesian tsunami

and wind-driven gyres.

1 Introduction

Properly handling coastlines is crucial for realistic two-

dimensional or three-dimensional ocean models. Two-

dimensional, one-layer models focus on the propagation

of barotropic waves and coastal effects. When modelling

tsunami-induced flooding the position of the coastline it-

self may be an unknown to be predicted by the model. In

that case wetting and drying at the shoreline must be prop-

erly handled (Audusse et al., 2004; Popinet, 2011). Prop-

erly predicting inundation of urban areas also requires ex-

tremely detailed topography data, typically to O(10m) ac-

curacy. Three-dimensional global ocean models usually treat

coastlines as fixed, rigid boundaries. This is a simpler set-

ting for which numerous methods have been designed in the

broader context of computational fluid dynamics (e.g. Alm-

gren et al., 1997; Angot et al., 1999; Popinet and Rickard,

2007). For operational ocean models, improvements over the

crude representation of coastlines as vertical walls limiting

the horizontal extent of each model layer have been intro-

duced (e.g. Adcroft et al., 1997). Another option is to use a

static variable resolution unstructured mesh adapted to coast-

line geometry (Harig et al., 2008). When the horizontal grid

is not fitted to the shape of coastlines, care must be taken

that boundary conditions are enforced accurately (Adcroft

and Marshall, 1998; Popinet and Rickard, 2007).

When it is desirable to capture non-stationary small-

scale flow features, using a dynamically adaptive compu-

tational mesh may be considered. Whether this strategy is

advantageous is strongly problem dependent. For tsunami

simulations a properly implemented adaptive strategy has

been shown to provide strong efficiency gains. Popinet and

Rickard (2007) use a quadtree approach to provide dy-

namic adaptivity on an A grid discretization of the shal-

low water equations. Berger et al. (2011) apply their adap-

tive mesh refinement (AMR) code GeoClaw to model a

synthetic tsunami test case in flat geometry. GeoClaw au-

tomatically handles wetting/drying and can be extended to

the sphere on longitude–latitude or other logically rectan-

gular grids (Berger et al., 2009). The approach of Popinet

(2011) is perhaps the most comprehensive dynamically adap-

tive method for calculating tsunami propagation: it allows

for wetting and drying and uses a highly efficient database

system for multi-level terrain reconstruction. For statistically

homogeneous shallow water turbulence, we have obtained

encouraging results by combining wavelet-based dynamic

adaptivity with local refinement criteria based on truncation-
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error estimates (Dubos and Kevlahan, 2013; Aechtner et al.,

2014).

Wavelet-based adaptive solvers for the incompressible

Navier–Stokes equations can be combined easily with a treat-

ment of complex three-dimensional, rigid boundaries based

on Brinkman penalization (Kevlahan et al., 2000; Schnei-

der and Farge, 2002; Vasilyev and Kevlahan, 2002; Kevla-

han and Vasilyev, 2005). In this paper, a similar approach for

handling fixed coastlines without wetting/drying is explored.

A novel Brinkman penalization of the rotating shallow wa-

ter equations is implemented in our dynamically adaptive

wavelet model on the sphere (Dubos and Kevlahan, 2013;

Aechtner et al., 2014) to simulate oceanic flows with realis-

tic coastlines and bathymetry over scales ranging from sub-

kilometric to global.

Brinkman penalization methods for the numerical solu-

tion of the Navier–Stokes equations with solid boundaries

were originally introduced by Angot et al. (1999) follow-

ing the pioneering work of Arquis and Caltagirone (1984).

Like all penalization methods, their goal was to avoid having

to adapt the discretization scheme to account for complex

solid boundaries by instead modifying the dynamical equa-

tions such that as a control parameter tends to zero the so-

lution of the modified equations with simple boundary con-

ditions (e.g. periodic) tends to the solution of the original

equations with the desired boundary conditions. The physi-

cal analogy is that the regular fluid is replaced by a porous

medium where the porosity and permeability tend to zero

in the solid portion of the computational domain and the

porosity is one (i.e. a regular fluid) in the fluid part of the

domain. Angot et al. (1999) proved that the method con-

verges and gave (non-sharp) estimates of the error in terms

of the control parameter. Because it is a volume penaliza-

tion, Brinkman penalization methods are easy to implement

since the geometry of the boundary need not be known. It

is sufficient to know the indicator function (or mask) defin-

ing points as belonging to either in the solid or fluid parts of

the computational domain. Notice that Brinkman penaliza-

tion enforces the boundary conditions only with first-order

accuracy while other methods reach second- or higher-order

accuracy (Popinet and Rickard, 2007). A family of higher-

order Brinkman penalization methods has been recently pro-

posed by Shirokoff and Nave (2015).

Since its introduction, Brinkman penalization has been

applied to a wide range of fluid flow problems and nu-

merical schemes, including spectral methods (Kevlahan and

Ghidaglia, 2001), moving boundaries (Kevlahan and Wad-

sley, 2005; Kolomenskiy and Schneider, 2009), the wave

equation (Paccou et al., 2005), the compressible Euler equa-

tions (Liu and Vasilyev, 2007), and the shallow water equa-

tions (Perret et al., 2003; Reckinger et al., 2012). The shal-

low water penalization method we propose is a modification

of the one proposed by Reckinger et al. (2012) to ensure that

mass and energy are conserved and that the wave speed is

the same in both the solid and fluid parts of the domain. We

also modify the velocity penalization (i.e. permeability) term

to ensure better control of the overall error using the porosity

parameter alone.

Penalization methods are particularly well suited to dy-

namically adaptive methods since these methods automati-

cally refine the computational grid in the boundary layers

and can use very coarse grids in the solid part of the com-

putational domain where the solution is irrelevant (Kevlahan

et al., 2000; Schneider and Farge, 2002; Vasilyev and Kevla-

han, 2002; Kevlahan and Vasilyev, 2005). In addition, be-

cause penalization methods enforce the boundary conditions

to only first-order accuracy, adaptive methods can provide

the required level of accuracy by local grid adaptation (i.e. h

refinement).

Previous volume penalization methods for the shallow

water equations are reviewed in Sect. 2. The new penal-

ization is derived from the porous shallow water equations

in Sect. 3. The new penalization is verified for the lin-

earized one-dimensional equations in Sect. 4. Finally, we

illustrate the potential of the new method by applying it

to two global ocean flows: tsunami propagation and wind-

driven gyres. These simulations have realistic bathymetry

and coastlines from the 1 arcmin NOAA ETOPO1 global

relief database (Amante and Eakins, 2009). The two exam-

ples show how the Brinkman penalization of the shallow

water equations works with a dynamically adaptive wavelet

method for both fast (tsunami) and slow (global ocean cir-

culation) dynamics and in the inertia–gravity (tsunami) and

quasi-geostrophic (global ocean circulation) regimes. We in-

tend to extend the methods presented here to build a full dy-

namically adaptive global ocean circulation model.

2 Previous penalization methods for the shallow water

equations

In vector-invariant form, Reckinger et al. (2012) proposed

the following set of penalized shallow water equations with

a flat bottom:

∂h

∂t
+

1

φ(x)
divhu= 0, (1)

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gh+

1

2
|u|2

)
=−σ(x)u, (2)

where h is the height of the fluid column, u is the vertically

averaged horizontal velocity and g is gravity. In this section,

as well as in Sects. 3 and 4, the Coriolis force is omitted for

simplicity. It will be reintroduced in the numerical experi-

ments of Sect. 5. The corresponding momentum equation is

∂m

∂t
+ div(m⊗u)+φgrad

(
1

2
gh2

)
=−σ(x)u, (3)

where momentum m= hu coincides with the mass flux.

φ(x) and σ(x) are respectively the variable porosity and lin-

ear friction terms characterizing the porous medium. In order
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to model a fluid with solid boundaries these terms have the

following discontinuous forms:

(φ(x),σ (x))=

{
(α,1/ε) in the penalized region,

(1,0) in the fluid,
(4)

where the parameters α and ε control the accuracy of the

boundary condition approximation. (For stable numerical

implementation of the penalization, the discontinuities in φ

and σ are smoothed over a few grid points.) Physically, a

large jump in porosity leads to a large jump in impedance

that causes inertia–gravity waves to be almost perfectly re-

flected at the solid boundary, while a strong linear friction

term rapidly damps velocity fluctuations approximating a no-

slip velocity boundary condition.

Equations (1–3) are derived from the Liu and Vasilyev

(2007) similar penalized equations for the compressible Eu-

ler equations. Both penalizations have the property that mass

and momentum do not move at the same speed, so it is im-

possible to conserve mass or to define an energy equation.

The lack of mass conservation is easy to see from the mass

equation (Eq. 1), which can be rewritten as

∂φ(x)h

∂t
+ divm= 0, (5)

where m= hu is the height (i.e. mass) flux. In order to con-

serve mass, the mass flux should actually be m= φ(x)u to

take into account the changing volume fraction of the fluid

in the porous medium. The penalized momentum equation

(Eq. 3) also uses a non-porous mass flux (i.e. hu instead of

φhu). Therefore, it is impossible to derive an energy budget

from Eqs. (1) and (3).

The Reckinger et al. (2012) penalization also has the prop-

erty that inertia–gravity wave speeds are 1/
√
α times faster

in the porous medium. This introduces a stiffness in time as-

sociated with the small porosity α that enforces an artificially

small time step.

The earlier shallow water equation penalization used by

Perret et al. (2003) is even simpler in that only the velocity

field is penalized using the friction term −σ(x)u. Therefore,

only the no-slip velocity boundary condition is approximated

and not the perfect reflection of inertia–gravity waves at the

boundary. This penalization can therefore be approximately

valid in the quasi-geostrophic regime where wave motion is

insignificant compared to vortical motion.

In the following section we derive the shallow water equa-

tions for a porous medium using the Euler–Poincaré the-

ory and then use these physical equations to propose a new

Brinkman penalization for the shallow water equations in

complex geometries. The final equations differ only slightly

from those proposed by Reckinger et al. (2012), but they con-

serve both mass and energy and the wave speed is the same

in both the fluid and penalized parts of the domain. Although

our penalization is better justified on physical grounds, it

is not yet clear whether it has any computational advan-

tages apart from eliminating the stiffness constraint associ-

ated with the small porosity α.

3 New volume penalization for the shallow water

equations

3.1 Derivation of porous shallow water equations

The Euler–Poincaré theory (Holm et al., 2002) states that

Hamilton’s least action principle applied to the action

L=
∫
L(h,u,x)dxdydt

generates momentum equations for a particular choice of La-

grangian density, i.e.L(h,(u),(x))= T−V . The Lagrangian

density is the difference in kinetic and potential energy den-

sity and is assumed to depend on a scalar h, velocity vec-

tor field u(x) and position vector x ∈ R2. If the conservation

equation for the scalar h is

∂h

∂t
+ div(hu)= 0,

then locally conservative vector-invariant equation for mo-

mentum m is

∂m

∂t
+ div(m⊗u)+ grad(p)=

∂L

∂x
, (6)

and the vector-invariant equation of motion is

∂v

∂t
+
∇ × v

h
×hu+∇B = 0, (7)

where

m=
∂L

∂u
= hv, B = u·v−

∂L

∂h
, p = L−h

∂L

∂h
, v = u.

The total energy

E =

∫∫
(m ·u−L)dxdy

is conserved.

We now use the Euler–Poincaré theory to derive standard

and modified shallow water equations. The fluid has free sur-

face perturbations η(x) from the mean free surface η = 0 and

the depth of the fluid is given by b(x) > 0 so the total depth

is h(x)= η(x)+ b(x) as shown in Fig. 1. (In ocean mod-

elling b is called the bathymetry, and b = 0 corresponds to

coastlines.) The shallow water approximation assumes that

η is small compared to depth b and that the wavelength of

surface waves is much longer than the depth b. Note that h is

proportional to the total mass density of the fluid column.

The standard shallow water equations are obtained using

the Lagrangian density for the shallow water system:

L(h,u)=
1

2
h
(
|u|2− g(η− b)

)
,
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Figure 1. Shallow water geometry. The perturbation of the sea sur-

face from equilibrium sea surface z= 0 is η(x) and the sea depth is

given by the bathymetry b(x)≥ 0, which is the depth of the seafloor

below the equilibrium sea surface. The total height of the fluid is

then h(x)= η(x)+ b(x). In the shallow water approximation the

wavelength of the perturbations of the sea surface is much greater

than the depth, and the amplitude of the perturbations is much less

than the depth.

from which one derives

m= hu,

B = gη+
1

2
|u|2, p =

1

2
gh2,

E =
1

2

∫∫
h
(
u2
+ g(η− b)

)
dxdy.

Thus, the shallow water equation of motion is the equation

of motion:

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gη+

1

2
|u|2

)
= 0. (8)

We now assume a porous medium with volume fluid frac-

tion given by the variable porosity φ(x). We define a new

variable h̃= φh satisfying the conservation law

∂h̃

∂t
+ div

(̃
hu
)
= 0, (9)

and the action

L=
∫ ∫ ∫

1

2
h
(
|u|2− g(h− 2b)

)
φdxdydt. (10)

The Lagrangian density for the new variable h̃ is then

L(̃h,u,x)=
h̃

2

(
|u|2− g

h̃

φ
+ 2gb

)
, (11)

from which

m= h̃u, v = u, B = gη+
1

2
u2,

p =
1

2
φgh2,

∂L

∂x
=

1

2
gh2 grad(φ)+ ghφgrad(b) .

The momentum equation for the porous shallow water sys-

tem is

∂m

∂t
+ div(m⊗u)+φgrad

(
1

2
gh2

)
− ghφgrad(b)= 0.

However, surprisingly, the vector-invariant form of the equa-

tions of motion for the shallow water system are identical

to the usual shallow water equation (Eq. 8); only the mass

budget has changed to (Eq. 9). States of rest correspond to

constant h and inertia–gravity waves travel at speed
√
gh if

the porosity φ is constant, independent of the actual value of

φ.

The non-dissipative equations of motion derived above

do not fully model flow in porous media since they do not

include the friction force per unit volume that resists flow

through the medium. Including the friction force, the full

vector-invariant equation of motion for the porous shallow

water system is

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gη+

1

2
|u|2

)
=−

µφ(x)

K(u,h,x)
u, (12)

whereµ is the fluid viscosity andK(u,h) is the effective per-

meability of the medium due to various friction terms. How-

ever, for the purposes of this paper we will assume the simple

linear friction term of the form

−
φ(x)

K
u, (13)

with constant permeability K which, like ε, has the dimen-

sions of a time.

If the porosity is not small, it is better to use an empiri-

cal nonlinear friction law that includes both bottom and wall

shear stresses (Guinot and Soares-Frazao, 2006). For exam-

ple, the Strickler law approximates the friction term as

−
gh̃|u|

k2h4/3
u, (14)

where k is the so-called Strickler coefficient that depends

empirically on the bottom roughness ks , e.g. Ramette’s for-

mula gives k = 8.2
√
g/k

1/6
s (Hervouet, 2007). Strickler’s law

is used by Guinot and Soares-Frazao (2006) in their porous

shallow water model for large-scale flooding of urban areas.

3.2 Volume penalization of the shallow water equations

Our goal in this paper is to derive a volume penalization for

solid boundaries in the shallow water model (e.g. coastlines

or islands in an ocean model). As in all penalization meth-

ods, the idea is to implement boundary conditions implicitly

by modifying the equations in a suitable way. In the limit

as certain control parameters tend to zero the solution of the

modified equations tends to the solution of the original equa-

tions with the desired boundary conditions. Such penaliza-

tion techniques are particularly well suited to adaptive nu-

merical methods since, although the solid region is techni-

cally part of the computational domain, it can be resolved

very coarsely except near the boundary.
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We propose modelling the solid parts (e.g. continents and

islands) of the computational domain as a porous medium

with vanishingly small porosity φ and permeability K . The

fluid part of the computational domain remains a regular

fluid. The jump in porosity causes inertia–gravity waves to be

reflected physically at the coastline and the small permeabil-

ity approximates a no-slip boundary condition for velocity,

i.e. u= 0.

The vector-invariant penalized shallow equations based on

(Eq. 12) are

∂h̃

∂t
+ divh̃u= 0,

∂u

∂t
+

curl(u)

h̃
× h̃u+ grad

(
gη̃

φ(x)
+

1

2
|u|2

)
=−σ(x)u, (15)

where η̃ = φ(x)η. The porosity φ(x) and porous friction co-

efficient σ(x) are discontinuous such that the fluid portion of

the domain is unaffected and the solid portion is penalized as

a very impermeable medium:

(φ(x),σ (x))=

{
(α,α/K) in the penalized region,

(1,0) in the fluid,
(16)

with K � α� 1. The solid regions are defined by the indi-

cator function χ(x):

χ(x)=

{
1 in the solid,

0 in the fluid.
(17)

When implemented numerically the indicator function χ(x)

is smoothed over a few grid points, as discussed in Reckinger

et al. (2012). The porosity φ(x) and friction coefficient σ(x)

are then defined based on χ(x) and the control parameters

α� 1 and K � α� 1 as

φ(x)= 1+χ(x)(α− 1), (18)

σ(x)=
α

K
χ(x). (19)

Note that the prognostic variables for the penalized shallow

water equations (Eq. 15) are h̃ and u and that h̃= h in the

non-penalized (i.e. non-porous) region.

Equation (19) shows that the velocity penalization friction

term σ(x) depends explicitly on both the porosity α and the

permeabilityK . In contrast, in Reckinger et al. (2012) the ve-

locity friction parameter ε is formally independent of poros-

ity. Although for a porous medium the velocity friction pa-

rameter depends on porosity, when these equations are used

for penalization there is ε and α can be varied independently.

The flux form of the equations is

∂h̃

∂t
+ div(m)= 0,

∂m

∂t
+ div

(
m⊗m

h̃

)
+φgrad

(
gh̃2

2φ2

)
− gh̃grad(b)=−σm,

where the mass flux m= φhu. This shows clearly that both

mass and momentum move at the same speed u.

Although this penalization scheme is similar to that pro-

posed by Reckinger et al. (2012), it does have some impor-

tant physical and numerical differences that could prove ad-

vantageous. In addition, we fully characterize the error and

convergence properties of penalization by deriving analyt-

ical estimates for the exact solution of the linearized one-

dimensional wave propagation problem.

3.3 Properties of the penalization

We now summarize the main numerical properties of the vol-

ume penalization of the rotating shallow water equations in-

troduced in the previous section.

The impedance mismatch at the solid boundary means that

inertia–gravity waves are reflected with reflection coefficient

R=
α−1
− 1

α−1+ 1
= 1− 2α+O(α2),

whereas the exact behaviour at the boundary is perfect reflec-

tion, R= 1. Therefore, some height amplitude will be lost

since part of the wave is transmitted and the size of the error

is O(α).

There are two main differences compared with the method

proposed in Reckinger et al. (2012). First, mass and energy

both move at the same speed u, so energy is conserved. In

particular, total energy decreases as

d

dt

1

2

∫∫
h̃
(
g(η− b)+ |u|2

)
φ(x)dxdy =

−

∫∫
σ(x )̃h|u|2φ(x)dxdy,

which implies that the penalization is stable. Secondly, ig-

noring friction, the linear wave speed is the same in both the

fluid and porous regions,

c = u±

√
gh̃

φ(x)
= u±

√
gH,

where h̃= hφ(x)= (H +O(η))φ(x), with η� 1, indepen-

dent of α. This means that, unlike the method of Reckinger

et al. (2012), the height penalization does not affect the time

step or stability properties of the numerical method.

The velocity penalization term is stiff in time, and limits

the time step to 1t =O(ε) for explicit methods. Avoiding

www.geosci-model-dev.net/8/3891/2015/ Geosci. Model Dev., 8, 3891–3909, 2015
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the stiffness is straightforward by implementing the penaliza-

tion term implicitly; however, the time step still needs to be

small enough to accurately resolve the numerical boundary

layer in the solid generated by the penalization. The height

penalization parameter α does not place any additional con-

straints on the spatial resolution 1x or the time step 1t .

Because height and velocity are governed by diffusion

(and not wave) equations in the penalized solid region, a

wave will not be emitted from the boundary if there is no

incoming wave. Therefore, the penalization is stable accord-

ing to GKS (Gustafsson–Kreiss–Sundström) stability theory

for numerical stability of hyperbolic problems (Gustafsson

et al., 1972).

The error and convergence properties of this method are

derived analytically and verified numerically for a simple,

linear one-dimensional example in following section.

4 Analysis of linearized 1-D equations and guidelines

for use

4.1 Exact solution and error analysis

We consider the one-dimensional penalized shallow water

equations linearized about the state of rest with depth H and

speed u= 0:

∂h̃

∂t
=−H

∂

∂x
(φ(x)u),

∂u

∂t
=−g

∂

∂x

(
h̃

φ(x)

)
− σ(x)u, (20)

where the penalization functions φ(x) and σ(x) are as given

in (Eq. 4). The geometry of the domain is defined by the in-

dicator function χ(x)=H(x), where H(x) is the Heaviside

function. This means that x < 0 is fluid and x ≥ 0 is solid.

(Note that in a numerical implementation the indicator func-

tion is smoothed over a few grid points to avoid numerical

oscillations.) The initial conditions are u(x,0)= 0 and

h(x,0)=


Hw, x <−L− 1,

−
Hw
L
(x+ 1), −L− 1≤ x ≤−1,

0, x >−1,

(21)

i.e. a linear ramp wave front with (non-dimensional) width L

and amplitude Hw.

Following Kevlahan and Ghidaglia (2001) we solve the

problem by taking separate Laplace transforms in time for

the regions x < 0 and x ≥ 0 and solving the resulting or-

dinary differential equations in x. The resulting four con-

stants are determined by the requirement of finite solutions

as x→±∞ and from the jump conditions at x = 0,

h̃(x−)= h̃(x+)/α, u(x−)= u(x+)α. (22)

These jump conditions are found by integrating equations

(Eq. 20) across the fluid–solid boundary x = 0.

The exact Laplace transforms of penalized height and ve-

locity in the fluid–solid regions are

h̃fluid(x,s)= h̃1(x,s)+
cHw

2Ls2
esx/c

(
e−s/c− e−s(1+L)/c

)
(1+α2)εs+ 1− 2α

√
εs(εs+ 1)

(1−α2)εs+ 1
,

ufluid(x,s)= u1(x,s)−
c2Hw

2HLs2
esx/c

(
e−s/c− e−s(1+L)/c

)
(1+α2)εs+ 1− 2α

√
εs(εs+ 1)

(1−α2)εs+ 1
,

h̃solid(x,s)=−
αcHw

Ls2

εs+ 1−α
√
εs(εs+ 1)

(1−α2)εs+ 1
e
−

x
√
εc

√
s
√
εs+1

(
e−s/c− e−s/c(1+L)

)
,

usolid(x,s)=
gHw

Ls3/2

√
εs+ 1−α

√
εs

(1−α2)εs+ 1
e
−

x
√
εc

√
s
√
εs+1

(
e−s/c− e−s(1+L)/c

)
, (23)

where the wave speed c =
√
gH , and h̃1(x,s) and u1(x,s)

do not depend on the penalization. Now, taking the leading-

order series expansions in α� 1 we have the following ap-

proximate expressions for the Laplace transforms of the pe-

nalized solutions:

h̃fluid(x,s)= h̃exact(x,s)

−
αε1/2cHw

L

esx/c
(
e−s/c− e−s(1+L)/c

)
s3/2
√
εs+ 1

+O(α2),

ufluid(x,s)= uexact(x,s)

+
αε1/2c2Hw

HL

esx/c
(
e−s/c− e−s(1+L)/c

)
s3/2
√
εs+ 1

+O(α2),

h̃solid(x,s)=
αcHw

Ls2
e
−

x
√
εc

√
s
√
εs+1

(
e−s/c− e−s(1+L)/c

)
+O(α2),

usolid(x,s)=
gHw

Ls3/2

e
−

x
√
εc

√
s
√
εs+1

√
εs+ 1

(
e−s/c− e−s(1+L)/c

)
+O(α), (24)

where we recall that the exact solution in the solid region is

zero.

Taking the inverse Laplace transform of Eq. (24) gives the

following results for the penalizations errors in the fluid part

of the domain:

h̃fluid(x, t)− h̃exact(x, t)=

αHw

L

[
f1(x+ ct − (1+L))− f1(x+ ct − 1)

]
,

ufluid(x, t)− uexact(x, t)=−
c

H
(̃hfluid(x, t)− h̃exact(x, t)), (25)

where

f1(x)=H(x)xM

(
1

2
,2,−

x

cε

)
,
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and M(1/2,2,−z) is a hypergeometric function with

leading-order asymptotic expansion for large argument z:

M(1/2,2,−z)∼
2
√
π
z−1/2.

Note that the error is exactly zero until the wave reflects from

the boundary. After reflection the error is zero at the leading

edge of the wave x = 1−ct and maximal at the trailing edge

x = 1+L−ct . The maximum relative penalization errors are

therefore

||̃hfluid− h̃exact||∞

Hw
= αM

(
1

2
,2,−

L

cε

)
∼ 2

√
c

L
αε1/2,

||ufluid− uexact||∞

c
= α

Hw

H
M

(
1

2
,2,−

L

cε

)
∼ 2

Hw

H

√
c

L
αε1/2, (26)

where we have assumed that ε� L/c.

The asymptotic estimates (Eq. 26) show that the penaliza-

tion converges as ε→ 0 and α→ 0 and that the relative er-

rors of the penalized equations areO(αε1/2
√
c/L) for height

and O(αε1/2
√
c/LHw/H) for velocity. As expected, the er-

ror is exactly zero until the wave reaches the solid boundary

at t = 1.

Now, taking the inverse Laplace transform in the solid re-

gion we find that

h̃solid(x, t)=
αcHw

L

 t−1/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ 2−

(x
c

)2
)

e−
t−1/c−τ

ε M

(
3

2
,1,

t − 1/c− τ

ε

)
dτ

−

t−(1+L)/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ 2−

(x
c

)2
)

(27)

e−
t−(1+L)/c−τ

ε M

(
3

2
,1,

t − (1+L)/c− τ

ε

)
dτ

]

usolid(x, t)=
gHw

L

t−1/c∫
t−(1+L)/c

e−τ/2εI0

(
1

2ε

√
τ 2−

(x
c

)2
)

dτ.

If we now assume that ε� t − (L+ 1)/c to approximate

I0(z)∼ e
z/
√

2πz for z� 1, x� ct−(L+1) to approximate√
τ 2− (x/c)2 = τ(1− 1/2(x/cτ)2)+O(x/cτ)4), and ε�

x/c to approximate M(3/2,1,−z)∼ 2z1/2/
√
π , the above

Laplace transform integrals become

h̃solid(x, t)=
2αcHw

πL

 t−1/c∫
x/c

(
t − 1/c

τ
− 1

)1/2

exp

(
−

x2

4c2ετ

)
dτ

−

t−(1+L)/c∫
x/c

(
t − (1+L)/c

τ
− 1

)1/2

exp

(
−

x2

4c2ετ

)
dτ

 ,
ũsolid(x, t)=

gHw

L

√
ε

π

t−1/c∫
t−(1+L)/c

τ−1/2 exp

(
−

x2

4c2ετ

)
dτ. (28)

Again, assuming ε� x/c, the integrand in the first equation

decays exponentially as τ → x/c and we can approximate

the lower integration limit x/c by zero. Evaluating the inte-

grals in Eq. (28) gives the final results:

h̃solid(x, t)

Hw
∼
αc

L

[
f2(x, t − 1/c)− f2(x, t − (L+ 1)/c)

]
,

usolid(x, t)

c
∼
gHw

Lc

[
f3(x, t − 1/c)− f3(x, t − (L+ 1)/c)

]
, (29)

where

f2(x, t)=H(t)t

[(
1+

x2

2c2εt

)
erfc

(
x

c
√
εt

)
−

x

2c
√
πεt

exp

(
−

x2

4c2εt

)]
,

f3(x, t)=H(t)

[
x

c
erf

(
x

2c
√
εt

)
+ 2

√
tε

π
exp

(
−

x2

4c2εt

)]
. (30)

Assuming an interaction time t ≈ L/c, the results (Eqs. 29,

30) show that the penalized solution penetrates a distance

O(
√
cLε) into the solid region. This numerical boundary

layer must be resolved, so we require a local grid size near

the boundary 1x ≤
√
cLε/2 or, equivalently, ε ≥ 41x2/cL

for a given grid size 1x. If the wavefront is well resolved,

i.e. L is much larger than the grid size1x, then the penaliza-

tion is first-order accurate in space with a relative height error

O(α1x/L). However, if the wavefront is only marginally re-

solved, i.e. L≈1x, then the relative error isO(α), indepen-

dent of the grid resolution. In this case a sufficiently small

error can be achieved for any grid by choosing α appropri-

ately.

In summary, we have found that the penalized solution

converges to the exact solution in the fluid domain with the

rates O(
√
c/Lαε1/2) for height and O(Hw/H

√
c/Lαε1/2)

for velocity, where c is the wave speed, L is the length scale

of the wave, and Hw/H is the ratio of wave height to mean

depth. The numerical solution penetrates a distance
√
cLε

into the solid region and this numerical boundary layer must

be resolved.
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Figure 2. Initial height conditions for the wave packet and Gaussian

test cases and porosity φ(x) with α = 0.1. The velocity is initially

zero. Note the smoothing of the indicator function over about four

grid points at the left and right solid boundaries with 1=1x.

4.2 Numerical verification on linearized 1-D wave

propagation

The error estimate O(αε1/2)=O(
√
αK) for height and ve-

locity derived in the previous section is verified here for one-

dimensional linear wave propagation with reflection. The

computational domain is x ∈ [0,Lx] with periodic numeri-

cal boundary conditions. The penalized (i.e. solid) region is

x ≤ x1 and x ≥ x2 defined by indicator functions:

χ(x)=
1

2

(
tanh

(
x− x2

1/4

)
− tanh

(
x− x1

1/4

))
,

φ(x)= 1+χ(x))(α− 1),

σ (x)=
1

ε
(H(−(x− x1))+H(x− x2)).

A smoothed porosity is used since φ(x) must be differenti-

ated. However, the permeability σ(x) is not smoothed since

otherwise the penalization error begins to grow for a suffi-

ciently small ε (depending inversely on α). (If ε =K/α, a

smoothed σ(x) may be used.) When ε =K/α we choose

K = (41x)2. A good choice for the smoothing parameter is

the smallest value that ensures stable solutions and linear er-

ror convergence with α. Since we use a low-order (second-

order) method in space, it is often possible to obtain stable

solutions with no smoothing. However, to ensure the solu-

tion is always stable we choose 1= 41x, which smooths

the indicator function over about four grid points as shown

in Fig. 2. We use these choices for the K and 1 in the re-

mainder of this section. Smoothing is also useful to produce

more accurate coastline profiles from masks as in the exam-

ples in the following section.

The initial condition is a Gaussian wave for height and

zero velocity:

h0(x)= exp

[
−

(
x−Lx/2

L

)2
]
,

u0(x)= 0, (31)

with wave width L= 1/24= 4.1667×10−2. The initial con-

ditions and porosity are shown in Fig. 2. The computa-

tional domain is [0,0.6] (i.e. Lx = 0.6), with the fluid part of

the domain [0.05,0.55] (i.e. x1 = 0.05 and x2 = 0.55) with

length of 0.5 and the left and right solid boundaries are pe-

nalized regions, each of 0.05 width.

The exact solution with initial conditions (Eq. 31) and

solid boundary conditions u= 0 and ∂h/∂x = 0 is

h(x, t)=
1

2
(h
p

0 (x− t)+h
p

0 (x+ t))

+
1

2
(u
p

0 (x− t)− u
p

0 (x+ t)),

u(x, t)=
1

2
(u
p

0 (x− t)+ u
p

0 (x+ t))

+
1

2
(h
p

0 (x− t)−h
p

0 (x+ t)),

where h
p

0 (x) and u
p

0 (x) are the odd periodic extension of the

initial conditions outside the fluid interval [x1,x2].

The linearized one-dimensional equation (Eq. 20) is

solved using a standard second-order finite volume/finite

difference scheme with third-order Runge–Kutta integration

in time on a uniform grid with N = 2400 grid points (ex-

cept where noted). The time step, based on stability, is

1t =min(4ε,0.41x/c). The wave speed c = 1, wave height

Hw = 1, and water depth H = 1 are fixed. The wave width

L= 1/24 is fixed except in the smoothing study. The factor
√
c/L≈ 5 in the expressions (Eq. 26) for the error conver-

gence and we expect ε� 4.1× 10−2 to observe the asymp-

totic convergence rate.

A typical penalized solution is shown at time t = 0.22 in

Fig. 3, when the wave is strongly interacting with the walls.

This figure confirms the expected behaviour of the penalized

solution near the walls: the velocity boundary condition has

an error and internal boundary layer of size O(ε1/2), while

the height perturbation does not penetrate into the solid.

In order to measure the effect of the penalization on the

error of the global solution after reflection we measure the

L∞ error at t = 0.5 when the exact solution should precisely

reproduce the initial conditions. The prediction that the er-

ror should scale proportional to the porosity α if α and ε

are independent and like α1/2 if ε =K/α (as in a porous

medium) is verified in Fig. 4. Note that the error at small

α < 10−4 is effectively limited by the error of the underly-

ing finite volume/finite difference numerical scheme, which

is about 6× 10−5 for the exact boundary conditions at the

resolution N = 2400.
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Figure 3. Solution at t = 0.26 just after the reflection when the wave

is still interacting strongly with the wall (circles) compared with the

exact solution (line). Parameter α = 10−3 and K = 4× 10−6. The

resolution N = 300 is low to clearly illustrate the internal boundary

layer and the differences between the exact and penalized solution

near the boundaries. Note the boundary layer in the penalized solid

region for the velocity and the fact the height drops slightly inside

the fluid due the smoothing of the porosity φ(x). The error in the

velocity boundary condition is 0.03≈ ε1/2, as expected.
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Figure 4. Control of L∞ height penalization error by the poros-

ity parameter α for the Gaussian wave test case compared with

predicted scaling α (straight line) when ε = 10−3 is fixed, and

with scaling α1/2 when ε =K/α as in the porous medium equa-

tions. The permeability is fixed at K = (41x)2 and the resolution

is N = 2400. Note that at this resolution the error of the second-

order finite volume method saturates at 7.7× 10−5. (The velocity

results have exactly the same error as the height results.)

Figure 5 (left) confirms that the error scales like K1/2

when ε =K/α. Finally, Fig. 5 (right) confirms that the error

for this penalization scheme, with permeability K =1x2,

is first-order accurate. Since we implement this penalization

in a dynamically adaptive simulation, sufficient accuracy is

achieved by refining the grid at the boundary (i.e. by h refine-

ment) and choosing α appropriately as explained in Sect. 4.3.

As mentioned in Sect. 3.2, Reckinger et al. (2012) assume

that α and ε are formally independent. However, in prac-

tice they advise that ε should be smaller than α, and choose

ε/α = 10−2 for their simulations. This restriction is not nec-

essary in our case since the error is O(αε1/2). This means

that α can be chosen smaller than ε, as shown in Fig. 4. In

fact, to ensure scaling of the error like O(ε1/2) when α is

fixed, it is necessary to choose εα =K (constant) when the

indicator function defining the solid region is smoothed. Al-

though Reckinger et al. (2012) interpret Fig. 8 for α = ε as
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Figure 5. Left: control of L∞ height penalization error by the per-

meability parameter ε for the Gaussian wave test case compared

with predicted scaling ε1/2 (straight line). Right: convergence of

L∞ error with grid size 1x for the Gaussian wave test case com-

pared with predicted first-order scaling (straight line). The porosity

is fixed at α = 10−2. The resolution is N = 2400 for both results.
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Figure 6. Left: dependence of error on smoothing width for four

different resolutions for a wave of size L= 1/24. Right: change in

error compared to non-smoothed case as a function of the ratio of

wave size L to smoothing width 1.

showing a weaker error convergence O(α1/2), it actually ap-

pears to show the expected scaling O(α) but over a small

range of α of about 1 decade.

Finally, we consider the effect of smoothing width 1 on

the accuracy of the results. As explained above, to guaran-

tee stability of the penalized solution it is often necessary to

smooth the porosity φ(x) at the fluid–solid boundary in or-

der to ensure stable results. Since this is a purely numerical

problem it is best to choose the smallest width sufficient for

stable solutions. Figure 6 (left) shows the error as a function

of the number of grid points of smoothing for four differ-

ent grid resolutions. The results are only weakly dependent

on the smoothing width 1 for 1< 61x and 1= 21x is

the minimum smoothing to ensure stability. Figure 6 (right)

shows how the error depends on the ratioL/1 (wave width to

smoothing width). As expected, the error decreases roughly

proportional to this ratio. We can therefore conclude that two

to four points of smoothing should be optimal and that the pe-

nalization gives good results for well-resolved waves where

L/1x� 1.

4.3 Guidelines for choosing penalization parameters

The parameters ε, α, and 1 determining the penalization are

chosen as follows.

The permeability parameter ε is set first, based on the spa-

tial resolution of the simulation 1x near the coastlines. As
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explained in Sect. 4.1, the smallest permissible value for ε

is 41x2/cL. However, the velocity penalization term is stiff,

restricting the time step to 1t ≤ C1ε (with C1 an order one

constant) for an explicit method. It is therefore often prefer-

able to choose a larger ε so the penalization does not enforce

an artificially small time step. For example, set ε =1t =

C21x/c according to the Courant–Friedrichs–Lewy (CFL)

stability condition for hyperbolic equations. Note that this is

also the smallest permissible ε when the smallest wavefronts

are only marginally resolved so L∼1x, where ε ≥ 41x/c.

Using this choice of ε, and in the least favourable case where

the smallest wavefronts are only marginally resolved, the rel-

ative error in height is O(α) and the relative error in velocity

is O(αHw/H) independent of ε and 1x.

Now, since ε has been determined by the resolution of the

simulation, the desired accuracy is controlled by setting the

porosity α. Recall that the choice of α does not affect the nu-

merical stability of the simulation. Typically, α =O(10−3) is

appropriate for a second-order accurate simulation. In a dy-

namically adaptive method like the one used here, α should

be set about 10 times smaller than the tolerance ε. Recall

that the parameter ε also enforces the no-slip (i.e. tangential)

velocity condition to a relative accuracy of O(ε1/2
√
u/l),

where u and l are the velocity and length scales of the flow

tangential to the boundary (Kevlahan and Ghidaglia, 2001).

The smoothing scale 1 of the indicator function χ(x) is

set to smooth over a few grid points (e.g. two to four). The

smoothing scaling should be much smaller than the scale L

of the smallest waves and also smaller than
√
Lcε.

These choices ensure the penalization is well resolved,

produces sufficiently accurate results, and is consistent.

When implemented in the adaptive wavelet method we must

also ensure α is not too small, i.e. α > 7.5× 10−4, in order

to avoid negative heights near the boundary due to the linear

interpolation used in the wavelet transform.

In the following section we verify the results of the pe-

nalization analysis numerically using a dynamically adaptive

second-order finite difference/finite volume scheme (Dubos

and Kevlahan, 2013; Aechtner et al., 2014) on the sphere

based on the TRiSK scheme (Ringler et al., 2010).

5 Applications to ocean simulation

The Coriolis force, which is omitted in the previous sections,

is now included by adding the Coriolis parameter f to the

relative vorticity curl(u) in the curl-form equations of mo-

tion (Eq. 15).

5.1 Sensitivity of penalized solutions to

piecewise-constant boundary approximation

In our penalized model of no-slip boundary conditions,

coastline geometry is approximated as piecewise constant on

the hexagonal–triangular C grid via the mask χ(x). Adcroft

and Marshall (1998) proposed a test to identify any spurious

effects due to piecewise-constant boundary approximations.

They calculated wind-driven β-plane flow in a square domain

where the physical domain was rotated at various angles with

respect to the Cartesian computational grid, with both no-slip

and free-slip boundary conditions. The solution has the form

of an intense western boundary current, a strong sub-gyre in

the northwest corner and a standing Rossby wave along the

northern boundary (see Fig. 7).

Adcroft and Marshall (1998) found that piecewise-

constant boundary approximations exert a spurious form

stress on the boundary currents, leading to significantly dif-

ferent results. The differences were greatest for free-slip

boundary conditions, but still evident for no-slip boundary

conditions (see their Fig. 4). The main differences at large

angles of rotation (θ = 45◦) are that the western boundary

current separates earlier from the western boundary and the

recirculating sub-gyre in the northwestern corner of the do-

main is much stronger.

In our case, although the boundary is defined via a mask

function, the actual boundary condition is not strictly piece-

wise constant since the boundary is smoothed slightly due

to both the exponential form of the penalization and the fact

that the mask itself is smoothed over a few points. In addi-

tion, the hexagonal–triangular C grid is more symmetric than

the Cartesian grid used in Adcroft and Marshall (1998). Nev-

ertheless, it is interesting to see how large the effect of the

boundary mask is on the solution.

We implement exactly the test case proposed in Ad-

croft and Marshall (1998): wind-driven flow on a β-plane

in a square domain. The model parameters are basin size

L= 2000 km, f0 = 0.7× 10−4 s−1, β = 2× 10−11 m−1 s−1,

kinematic viscosity ν = 500 m2 s−1, linear friction coeffi-

cient r = 10−7 s−1, density ρ0 = 103 kg m−3, reduced grav-

ity g′ = 0.02 m s−2, and wind-stress τ0 = 0.2 N m−2. The

equilibrium layer thickness is H = 500 m. The wind-

stress (τ(ỹ)=−τ0 cos(πỹ/L)̃i) and the Coriolis parameter

(f (ỹ)= f0+βỹ where (̃x, ỹ)) are the physical coordinates

which are rotated by an angle θ with respect to the computa-

tional model coordinates (x,y). No-slip solid boundaries are

located at x̃ = 0,L and ỹ = 0,L.

The wind-driven flow is computed using the Matlab code

described in Dubos and Kevlahan (2013), which solves

the adaptive wavelet method on the plane for the TRiSK

second-order finite volume/finite difference discretization

of the shallow water equations Ringler et al. (2010). We

set the grid adaptation tolerance ε = 0, so the computa-

tion is non-adaptive with a uniform triangular grid size of

25.14 km. To allow for rotation of the physical domain the

lozange-shaped computational domain has sides with length

of 3420 km (Dubos and Kevlahan, 2013).The equations are

non-dimensionalized with respect to L, ρ0, and the Sver-

drup velocity USv = τ0/(ρ0βHL)= 0.01 m s−1. In this non-

dimensionalization the penalization parameters chosen are
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Figure 7. Grid geometry sensitivity study of the penalized no-slip

boundary for wind-driven ocean circulation in a square basin (Ad-

croft and Marshall, 1998). The four images show instantaneous

layer depth after 10 years for four simulations where the physical

domain is at various angles with respect to the discrete hexagonal–

triangular computational grid.

α = 10−2 and η = 10−4. The mask χ(x) is smoothed over

two grid points.

The equations are integrated from rest for 10 years us-

ing a third-order strong stability preserving Runge–Kutta

method with a CFL number of 0.8 (Spiteri and Ruuth, 2002).

Note that Adcroft and Marshall (1998) deliberately specify

a grid resolution such that the Munk layer is barely resolved

(only δM = 1.161x) to emphasize any spurious effects of the

boundary conditions.

Figure 7 shows the instantaneous layer thickness after

10 years where the physical flow and domain is at the an-

gles θ = 0, 10, 30, and 45◦ with respect to the computational

hexagonal–triangular C-grid. All four figures are very sim-

ilar qualitatively and quantitatively. There are some slight

qualitative differences discernible in the internal structure of

the standing Rossby wave southeast of the intense sub-gyre.

There is also very small variation in the maximum height

of the layer: hmax = 724.8 m at θ = 0◦, hmax = 723.4 m at

θ = 10◦, hmax = 722.1 m at θ = 30◦, and hmax = 728.7 m at

θ = 45◦. The biggest variation in maximum height is 1.7 %

of the perturbation in layer depth (or 0.78 % of the total layer

depth), which is negligible given the long integration time

and second-order discretization. These qualitative and quan-

titative differences are insignificant compared with those ob-

served in Adcroft and Marshall (1998), where the sub-gyre

was clearly displaced to the southeast and the maximum

height was at least 160 m higher at θ = 45◦ than at θ = 0◦.

We therefore conclude that our Brinkman penalization

method is not sensitive to the orientation of solid bound-

aries with respect to the computational hexagonal–triangular

C grids of interest on the sphere.

5.2 Implementation of penalization in an adaptive

wavelet solver on the sphere

Penalization techniques are especially well suited to dynami-

cally adaptive numerical simulations, where the local resolu-

tion changes in time to resolve the solution. In particular, in

ocean flows we expect the resolution to be finer near coast-

lines in order to resolve boundary currents (e.g. wind-driven

gyres in the quasi-geostrophic regime) or wave interaction

with the coast (e.g. tsunami propagation in the inertia gravity

wave regime). Ocean flow is well suited to variable resolution

adaptive numerical methods since about 25 % of the surface

of the Earth is land (which thus requires no resolution) and

the ocean flows are highly inhomogeneous and variable in

both time and space.

An explicit definition of the coastline is difficult to imple-

ment in adaptive simulations because the precise location of

the coastline changes as the grid refines and coarsens. On

the other hand, it is computationally inefficient to resolve the

coastline to the finest resolution at all locations and at all

times. Defining the coastline as a mask means that the coast-

line is defined implicitly and automatically becomes more

detailed as the grid is refined to follow the local flow dy-

namics. In addition, smoothing the profile of the coastline

over a few grid points arguably produces a better physical

model than a sharp boundary (since coastlines are in fact

porous). The multiscale and staggered structure of the adap-

tive wavelet scheme also causes problems for an explicit def-

inition of the coastline since the hexagonal cells containing

the height are shifted between adjacent scales of resolution

(see Dubos and Kevlahan, 2013; Aechtner et al., 2014).

Finally, as mentioned in the previous section, grid refine-

ment near the coastlines increases the local accuracy of the

penalization through h refinement compensating for its rela-

tively low order of accuracy.

The penalization defined by the variables porosity (Eq. 18)

and friction (Eq. 19) is easily integrated into the dynam-

ically adaptive second-order finite difference/finite volume

scheme on the sphere presented in Dubos and Kevlahan

(2013) and Aechtner et al. (2014) since it requires only

straightforward modifications of the shallow water equations.

The bathymetry and topographic data are from the 1 arcmin

NOAA ETOPO1 global relief database (Amante and Eakins,

2009).

The raw bathymetry data from the ETOPO1 database natu-

rally tends to zero depth near the coast. Because we have not

implemented wetting and drying in our shallow water model,

we impose a minimum depth Hmin near the coastlines:

b =


br br ≤−Hmin,

−Hmin −Hmin < br < 0,

0 otherwise.

(32)

In practice, Hmin > 2m is usually sufficient.

The mask χ(x) defining the solid and fluid regions is found

by setting locations with negative bathymetry to zero and re-
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gions with positive (or zero) bathymetry to one,

χ =

{
0, br < 0,

1 otherwise.
(33)

This generates a mask on the regular 1 arcmin latitude–

longitude ETOPO 1 grid, which does not correspond to

the non-uniform dual hexagonal–triangular grids used in the

adaptive scheme. The value of the mask at required points

on the hexagonal–triangular grid are found by using a sim-

ple exponential radial basis function (RBF) with weights

f (x;a)= exp(−(ar)2) where r is the arc distance between

the ETOPO 1 mask and the location of the required grid

point. The parameter a is chosen to smooth over an area

equivalent to two to four hexagonal cells. This RBF pro-

cedure both interpolates from the latitude–longitude grid to

the adaptive grid nodes and smooths the resulting mask. The

RBF procedure can also be used to smooth the bathymetry

data in the fluid part of the domain, although this is not usu-

ally necessary. Currently, all points are smoothed although

the method could be optimized by smoothing only those

points in a small neighbourhood of a coastline.

During grid refinement the bathymetry is computed at

the new grid-points using the RBF interpolation described

above. The adaptive wavelet method exactly conserves the

mass of the perturbed free surface with respect to the mean

sea level. However, the RBF procedure for interpolating

bathymetry on a locally refined grid does not conserve the

total mass of mean sea level since the newly interpolated

points could modify the mean sea level over the refined cell.

However, this mass defect is extremely small (approximately

roundoff error). The mass defect caused by changes in the

bathymetry cannot accumulate and is bounded at all times. If

the grid coarsens again to its initial configuration, the mass

defect is precisely zero. If exact cell-wise mass conservation

of the mean sea level is necessary, the bathymetry data could

be stored as a wavelet transform such that the mean is con-

served at all levels of resolution.

In the following sections the adaptive wavelet method for

the shallow water equations with penalization is used to

solve two characteristic ocean flows: tsunami propagation

(i.e. the inertia gravity wave regime with fast dynamics) and

wind-driven gyre flow (i.e. the quasi-geostrophic regime with

slow dynamics). The goal of these simulations is to demon-

strate the potential of this method for efficient simulation of

global flows with localized small-scale features. It should be

stressed that different degrees of physical accuracy are to be

expected in each case due to the approximations inherent in

the shallow water model. On the one hand, the shallow wa-

ter equations model tsunami propagation quite accurately, so

that a realistic tsunami simulation is expected. However, the

shallow water equations are quite insufficient to model the

general circulation of the oceans. Only the mean gyre cir-

culation, driven by the wind stress and Sverdrup balance,

which is acceptably represented in a one-layer model, can be

captured realistically. Smaller-scale features, such as vortices

and jet meandering, are predominantly generated in the real

ocean by baroclinic mechanisms which cannot be captured

by a single-layer model. Their main characteristics are not

expected to be realistic. Rather, the capacity of the adaptive

model to produce, say, boundary currents should be analysed

as a qualitative demonstration of the potential of the method,

rather than evaluated quantitatively for its accuracy.

5.3 Tsunami propagation

Our first example illustrates how the penalization, combined

with the dynamically adaptive wavelet method (Aechtner

et al., 2014), performs for global calculation of tsunami wave

propagation. In the absence of a treatment of wetting and dry-

ing at the shoreline, important aspects of the tsunami, espe-

cially in terms of its impacts, cannot be simulated. Neverthe-

less the propagation of the wave should be properly captured,

especially wave refraction by the bathymetry, as well as ar-

rival times and wave amplitude before breaking and flooding.

The flow is clearly in the inertia gravity wave regime and

the dynamics are fast. Since the solution is very localized,

the dynamical adaptation is particularly effective, allowing

for local resolutions of up to 0.5 km on a global model. This

inertia–gravity regime is a good test of the accuracy of the

penalized approximation of the reflecting boundary condi-

tions for height since reflection off coastlines and islands is

an essential component of tsunami dynamics. Note that be-

cause of the sensitivity of the results on the precise choice of

initial condition, bathymetry, and coastline geometry a pre-

cise measure of the error is not possible, although the results

are qualitatively in good agreement with the observations and

other simulations.

We simulate the 2004 tsunami generated by the Sumatra–

Andaman earthquake. The initial condition is based on the

seismic data calculated by Fujii and Satake (2007) from

available tide gauge and satellite altimetry data. This initial

condition is given in the form of complete seismic data on 22

separate square geographic regions, as shown in Fig. 4 of Fu-

jii and Satake (2007). These 22 separate sets of seismic data

are used to find the perturbed surface height using the Okada

(1985) method with Matlab software written by Beauducel

(2012). (Note that each of the 22 regions provides a separate

sea surface height perturbation.) The initial velocity is taken

to be zero.

The degree of mesh refinement is controlled by an over-

all non-dimensional tolerance ε (not to be confused with the

relaxation time ε of the penalization), from which thresh-

olds for height and velocity are deduced (Dubos and Kevla-

han, 2013). The simulation was run with an overall toler-

ance of ε = 0.05, and the thresholds for height and veloc-

ity were εh =Hmaxε
3/2 and εu =Hmaxg/cε

3/2 where Hmax

is the maximum height perturbation at any given time step.

This allows the adaptation to accurately track the waves even

though after several hours their characteristic height Hmax is

only 10 % of its initial value. This modification is important
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Figure 8. First arrival time (of a wave with height at least 5 cm) and maximum wave height for simulation of the 2004 Indonesian tsunami.

Figure 9. Tsunami after 70 min. The grid compression ratio is 930

and the finest J = 14 resolution is required only near the coasts

where the tsunami has hit and very locally in the propagating wave-

front. The black boxes indicate the zoomed regions shown in Fig. 10

for cases where the flow field is not statistically stationary

in time. Note that we have deliberately chosen a relatively

high tolerance value to demonstrate that the code can provide

qualitatively good results even for grid compression ratios of

O(103).

The coarsest level is J = 9 with five levels of refinement

to give a maximum scale of J = 14 corresponding to a mini-

mum average resolution of about 〈1xmin〉 = 475m. Note that

a non-adaptive simulation at this resolution would require

about 2.68× 109 height nodes (hexagonal cells), while the

initial condition requires only about 3.09× 106 height nodes

in the adaptive simulation corresponding to a grid compres-

sion ratio of 867.

The penalization parameters are α = 8× 10−3 and η =

5×10−5 and the minimum bathymetry depth isHmin = 50 m.

The adaptive wavelet code was run on 256 cores on the

SciNet GPC (General Purpose Cluster) parallel computer.

100 km

Figure 10. Tsunami: approximately 650 km×550 km zoom of grid

(left) and height (right) for results shown in Fig. 9. Recall that in

the left figure the black hexagons have the size of approximately

0.5 km.

The first arrival time of a 5 cm wave and the maximum

wave height over all times up to 16 h at all positions are

shown in Fig. 8. The maximum wave height results show

the focusing effect of bathymetry features (particularly the

Southwest Indian Ridge) and agree qualitatively with both

observations and simulations using the MOST (Method of

Splitting Tsunami) model (Titov et al., 2005). Detailed quan-

titative verification is not possible due to sensitive depen-

dence of the results on details of the initial conditions,

bathymetry and coastline modelling (including run-up, not

included in this model).

The ability of the code to track an evolving localized

tsunami wave over long times and through reflection and fo-

cusing events is illustrated in Figs. 9, 11, and 12. The actual

tolerances are scaled dynamically to take into account the

decreasing maximum wave height over time. Note that the

finest J = 14 (475 m) resolution is only needed very locally

along some parts of the coastline and where the wavefront

is very steep or focusing. Figure 10 uses a zoomed view to

show precisely where the finest resolution is required in the

interior of a focusing wave packet. As mentioned above, we

have deliberately chosen a relatively large tolerance since we
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Figure 11. Tsunami: adaptive grid and wave height after 4 h. The

grid compression ratio is 740.

Figure 12. Tsunami: adaptive grid and wave height after 16 h. The

grid compression ratio is 455.

are interested in the propagation of the wavefront (and to il-

lustrate the extreme adaptivity potential of the method). If we

were interested in accurate simulation of the entire wavefront

(e.g. the residual wave motion shown in Fig. 12 at 16 h) we

could select a smaller tolerance.

This simulation has demonstrated the potential of the dy-

namically adaptive wavelet method with penalization for

high resolution simulation of tsunami propagation. Local

resolutions of less than 500 m have been achieved on a

global model with modest consumptions of computational

resources: the simulation until the arrival at the African coast

requires only 2–3 days on 256 cores of a computing cluster.

Because of the localization of the wavefronts, tsunami prop-

agation is particularly well suited to adaptive simulation.

The plot of the grid compression ratio shown in Fig. 13

shows that the code achieves very high grid compression ra-

tios, ranging from 936 at 40 min to 400 at 16 h when the

wave has entered the Atlantic Ocean. The average grid com-

pression ratio is 558. Note that Aechtner et al. (2014) found

that CPU time is proportional to the number of active grid

points. When all potential degrees of freedom are included

(height and velocity nodes) the grid compression ratio varies

from 1240 to 455. Since Aechtner et al. (2014) found that

Figure 13. Grid compression ratio for tsunami simulation counting

height nodes only and all degrees of freedom (i.e. height and veloc-

ity nodes).

the adaptive wavelet code is about 3 times slower per ac-

tive height node than the non-adaptive TRiSK code, we ex-

pect the tsunami simulation to be between 130 and 300 times

faster than the non-adaptive code for a J = 14 resolution.

Compared to a similar spectral code the adaptive simulation

should be about 248–91 times faster.

As mentioned above, the code is run on the SciNet GPC

machine, which uses Intel Xeon E5540 processors connected

with Infiniband DDR and QDR networks. In terms of actual

CPU time, it takes on average 8.6 s of wall clock time for

1 s of physical time at 475 m resolution on 256 cores for the

first 7 h (until the tsunami reaches the coast of Africa). Dur-

ing this initial time the average number of height nodes is

3.4235× 106, the average time step is 1.1710 s and the aver-

age CPU time per time step is 10.1 s. For the entire 16 h there

are, on average, 4.8059×106 active height nodes, a time step

of 1.1490 s and a CPU time per time step of 12.8 s, leading to

11.1 s of wall clock time for 1 s of physics time. Note that, as

shown in Aechtner et al. (2014), the CPU timescales propor-

tionally to the number of active grid points, which increases

steadily as the tsunami spreads across the globe.

If necessary, the CPU time per time step could be im-

proved easily by using a time integration scheme with fewer

trend evaluations per time step (the RK34 scheme requires

four). A more substantial improvement could be found by us-

ing a more efficient technique for calculating the bathymetry

and topography masks, such as the very efficient multi-scale

method proposed by Popinet (2011).

Since we find that the code has 94 % strong parallel scal-

ing efficiency when passing from 128 to 256 cores, opera-

tional forecasting should be possible using a few thousand

cores. However, Aechtner et al. (2014) found that weak paral-

lel scaling efficiency drops to about 70 % on 640 cores when
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Table 1. Physical parameters used for the reduced gravity simulation of wind-driven ocean circulation.

Non-dimensional parameters of boundary layer determining simulation

Reynolds number Re 104

Froude number of boundary layer FrBC 0.3

Non-dimensional boundary layer width δ∗
M

0.0125

Unconstrained parameters

Radius of Earth R 6.3710× 106 m

Reference length scale (radius of North Atlantic) L 3.0000× 106 m

Mean ocean depth H 3.5729× 103 m

Velocity of boundary layer UBC 1.8000× 100 m s−1

Rotation rate � 5.7664× 10−7 s−1

Wind stress τ 7.1592× 10−2 N m−2

Density ρ 1.0270× 103 kg m−3

Quantities determined by above choices

Boundary layer width δM = δ
∗
M
L 3.7500× 104 m

Kinematic viscosity ν = UBCδM/Re 6.7500× 100 m−1 s−1

Effective β parameter β = ν/δ3
M

1.2800× 10−13 m−1 s−1

Sverdrup (gyre) velocity USv ∼
1

βHL
τ
ρ 5.2875× 10−2 m s−1

Wave speed c = UBC/FrBC 6.0000× 100 m s−1

Gravitational acceleration g = c2/H 1.0076× 10−2 m s−2

Coriolis parameter f ∼� 5.7664× 10−7 s−1

Rossby radius of deformation Rd = c/f 1.0405× 107 m

Rossby number Ro= USv/(Lf ) 3.0565× 10−2

there are only 1344 grid points per core. Therefore, efficient

implementation on more than O(103) cores will likely not

be possible without adding vertical levels due to load balanc-

ing issues for highly inhomogeneous problems like tsunami

propagation.

Popinet (2011) presented a test case of his quadtree adap-

tive code for the same Sumatra–Andaman earthquake initial

conditions, but on a small local domain centred on 94◦ E,

8◦ N and extending over 54◦ in both longitude and latitude

(about 2.6 % of Earth’s surface) with a finest resolution of

about 1.5 km. He found an average grid compression ratio of

about 50 but did not present any other metrics of computa-

tional efficiency. However, he did note that previous analysis

had shown that the overhead due to adaptivity was about 5–

10 times more compared with running the same simulation

on a non-adaptive grid (recall that our method has an over-

head of about 3 times more).

5.4 Wind-driven ocean circulation

The second simulation is of global wind-driven ocean cir-

culation over several years. This tests the adaptive wavelet

model with Brinkman penalization in the quasi-geostrophic

regime for slow dynamics. Our goal is to qualitatively pre-

dict the structure of the main ocean gyre flows, within the

limits of the rotating shallow water equation model. In this

case large basin-scale circulation is driven by the applied

wind stress forcing via the Sverdrup relation. Intense bound-

ary currents are expected to form along western coastlines

(e.g. the Gulf Stream). The shallow water equations are mod-

ified by adding a wind-stress forcing term τ/(ρh) to the right

hand side of the equation.

As for the tsunami case, the bathymetry and topographic

data are from the 1 arcmin NOAA ETOPO1 global relief data

base (Amante and Eakins, 2009). The wind stresses τ (x,y)

are stationary in time and derived from the mean Decem-

ber wind stresses from the NCAR Hellerman and Rosenstein

Global Wind Stress Data (Hellerman and Rosenstein, 1980,

1983) shown in Fig. 14. This data set consists of monthly av-

eraged wind stress over the global ocean for the years 1870

through 1976 on a 2◦ latitude–longitude grid. The wind stress

data is evaluated on the adapted grid using bilinear interpo-

lation.

The numerical experiment is characterized by a few inde-

pendent dimensional parameters: τ/ρ with τ the mean wind

stress and ρ the density of water, the planetary rotation rate

�∼ f and radius R, the basin scale L∼ R, the mean ocean

depthH , gravity g, the Reynolds numberRe, the width of the

boundary layer δM , and the Froude number of the boundary

layer FrBC. Once these are defined, a few other scales emerge

following Sverdrup balance in the ocean interior and balance

between viscous friction and meridional transport of plane-

tary vorticity in the western boundary current. The kinematic
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Figure 14. December wind stress field from Hellerman and Rosen-

stein (1980, 1983) used to force wind-driven ocean circulation

shown in Fig. 15. Only every other wind stress data point is shown.

The rms (root mean square) wind stress is 7.1592× 10−2 N m2.

viscosity is therefore ν = UBCδM/Re, and β = ν/δ3
M . The

gyre velocity USv set by Sverdrup balance is

USv ∼
1

βHL

τ

ρ
. (34)

The gyre is characterized by its Rossby number Ro=

USv/fL, which should be small.

The dimensional and non-dimensional parameters are

fully summarized in Table 1. Given the limitations of the

shallow water model, we have sacrificed the realism of some

of the dimensional parameters, while preserving the main

scales of the gyres and boundary currents. We retain real-

istic values of R, L, H , UBC, and USv. On the other hand we

choose unrealistic values for gravity g and planetary rotation

�, and β. Indeed, a large gravity wave speed c imposes small

explicit time steps, which make the simulation very costly

without affecting the gyre and boundary current. Since we do

not currently use a local time-stepping scheme, the (global)

time step is set by the smallest grid size over the whole com-

putational domain. Hence, we sacrifice the realism of c and

reduce it to a minimum, i.e. FrBC is set as large as possible

without producing shocks. This defines c = UBC /FrBC and

g = c2/H . The Reynolds number is set moderately large to

permit barotropic instability and the generation of vortices.

The wavelet simulation uses a tolerance of ε = 1.0, and the

thresholds for height and velocity are εh = USvRoR/gε
3/2

and εu = USvRoε
3/2. The coarsest level is J = 12 with three

levels of refinement to give a maximum level of J = 12 and

a minimum average resolution of about 1xmin = 1.9km or

1 / 64◦. The penalization parameters are α = 10−2 and η =

10−4. The minimum bathymetry depth is limited to Hmin =

50 m. The initial conditions are zero velocity and zero sea

surface height perturbation. The adaptive wavelet code was

run on 256 cores on the SciNet supercomputer.

The mean ocean circulation consists of basin-scale gyres

driven by the wind stress via Sverdrup balance. The rigid-

wall boundary condition induces narrow and intense west-

ern boundary currents dominated by advection of planetary

Figure 15. Adapted grid (left) and relative vorticity field (right) for

wind-driven ocean circulation after 301 days. Note vortex shedding

from the boundary current off Argentina and in Drake’s Passage.

velocity and friction. This case is therefore a good test for

the penalized velocity boundary conditions. We stress again,

however, that the mechanism generating meanders and vor-

tices from the gyre circulation and the boundary currents in

the shallow water equations is purely barotropic. Except per-

haps close to coastlines and at a kilometre scale, a differ-

ent baroclinic mechanism is believed to be dominant in the

oceans at mesoscale and sub-mesoscale but cannot be cap-

tured in a one-layer shallow water model.

Figure 15 shows the vorticity after 301 days. The grid

is refined only at the boundary currents and the grid com-

pression ratio for height nodes is roughly constant at about

210 once the boundary currents have developed (after about

1 week). Coherent vortex shedding, similar to von Karman

vortex streets, is clearly visible at some high wind stress lo-

cations, such as the Drake Passage and southern coast of Ar-

gentina shown in Fig. 15. The zoom of the unstable boundary

layer region off southern Argentina shown in Fig. 16 illus-

trates the complex structure of the boundary current and mul-

tiple small-scale vortices. Note that the details of the bound-

ary current are well captured by the adaptive grid.

Figure 17 shows the eastern coast of North America, in-

cluding the area where the Gulf Stream is generated off Cape

Hatteras. Intense western boundary currents and some vor-

tices are clearly visible. The boundary current detaches north

of Cape Hatteras, as for the Gulf Stream, although it subse-

quently stays closer to the coast than the Gulf Stream. How-

ever, as noted above, we do not expect to accurately model

the dynamics and structure of the Gulf Stream since the shal-

low water equations used here do not capture the necessary

baroclinic mechanisms of vortex generation.

Higher resolutions and Reynolds numbers would lead to

more complex two-dimensional turbulence like dynamics

(with physics different from the actual flow due to the shal-

low water approximation). Despite the limitations of the ex-

perimental set-up, these results give an indication of the po-

tential performance of a multi-layer model and the ability of
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Figure 16. Zoom of vortex shedding dynamics off the southern

coast of Argentina shown in Fig. 15: grid (left) and relativity vortic-

ity (right). The scales are as in Fig. 15. Note the complex boundary

layer structure and vortices captured by the adaptive grid.

Figure 17. Adapted grid (left) and relative vorticity (right) for wind-

driven circulation near the east coast of North America, correspond-

ing to the location of the Gulf Stream. The scales are as in Fig. 15.

Intense western boundary currents and some vortices are clearly vis-

ible.

the method to capture boundary currents and their complex

vortical structure.

6 Conclusions

We have derived and analysed mathematically a new volume

penalization for no-slip boundary conditions for the shallow

water equations. This penalization is based on the physical

equations for shallow water flow in a porous medium with

vanishing porosity and permeability in that part of the do-

main corresponding to solid regions. Mathematical analysis

of the linearized one-dimensional shallow water equations

shows that the solution of the penalized equations converges

to exact solution in the limit as porosity α and permeability

η tend to zero. The error at finite α and η is O(αη1/2). Un-

like previous penalizations of the shallow water equation, it

conserves mass and energy and the wave speed is the same

in both fluid and solid regions. The convergence and error

properties of the method have been verified numerically for

the one-dimensional linearized equations.

The primary motivation for developing this new penaliza-

tion is to extend our recent dynamically adaptive wavelet

method on the sphere (Dubos and Kevlahan, 2013; Aechtner

et al., 2014) to model ocean flows with coastlines. Penaliza-

tion techniques are ideal for dynamically adaptive methods

because they implement the coastline geometry implicitly by

modifying the equations of motion rather than by explicitly

changing the geometry of the computation. The resolution of

the coastline is high only where required by the flow dynam-

ics.

We have implemented the proposed penalization in the

adaptive wavelet code and tested it on two typical global-

scale flows: long-distance tsunami propagation (i.e. the

inertia–gravity wave regime with fast dynamics) and wind-

driven ocean circulation (i.e. the quasi-geostrophic regime

with slow dynamics). These simulations show the potential

of the adaptive method combined with the penalization to

drastically reduce the number of computational elements.

The adaptive tsunami simulation uses between 455 and 1245

times fewer computational elements (i.e. height nodes) than

an equivalent non-adaptive simulation, while the wind-driven

ocean circulation simulation uses around 210 times fewer el-

ements.

Although the shallow water equations are considered quite

accurate for tsunami calculations (and are used in many op-

erational models) they are clearly physically insufficient for

calculating ocean circulation. The next step in the develop-

ment of the adaptive wavelet model for ocean circulation is

to add vertical layers and temperature and density equations.

The grid adaptation will only be done in the horizontal plane,

so the three-dimensional model should actually have better

parallel performance than the model on the sphere since the

computational load will be better balanced for large numbers

of processors O(104
− 105). We expect to also use penaliza-

tion to model bathymetry, as well as coastlines, in the three-

dimensional model, following Reckinger et al. (2012).

The penalization method presented here should aid in

the development of fully dynamically adaptive ocean global

models for tsunami propagation and ocean circulation.

Code availability

The complete adaptive wavelet code used to generate the re-

sults in this paper is available at

bitbucket.org/kevlahan/wavetrisk.
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