Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 8, issue 2
Geosci. Model Dev., 8, 409–429, 2015
https://doi.org/10.5194/gmd-8-409-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The community version of the Weather Research and Forecasting...

Geosci. Model Dev., 8, 409–429, 2015
https://doi.org/10.5194/gmd-8-409-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 24 Feb 2015

Development and technical paper | 24 Feb 2015

A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

L. K. Berg et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Mirena Feist-Polner on behalf of the Authors (21 Oct 2014)  Author's response
ED: Referee Nomination & Report Request started (24 Oct 2014) by Tim Butler
RR by Anonymous Referee #1 (03 Nov 2014)
RR by Anonymous Referee #3 (24 Nov 2014)
RR by Anonymous Referee #2 (18 Dec 2014)
ED: Publish subject to minor revisions (Editor review) (14 Jan 2015) by Tim Butler
AR by L. K. Berg on behalf of the Authors (23 Jan 2015)  Author's response    Manuscript
ED: Publish as is (28 Jan 2015) by Tim Butler
Publications Copernicus
Download
Short summary
This work presents a new methodology for representing regional-scale impacts of cloud processing on both aerosol and trace gases in sub-grid-scale convective clouds. Using the new methodology, we can better simulate the aerosol lifecycle over large areas. The results presented in this work highlight the potential change in column-integrated amounts of black carbon, organic aerosol, and sulfate aerosol, which were found to range from -50% for black carbon to +40% for sulfate.
This work presents a new methodology for representing regional-scale impacts of cloud processing...
Citation