Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • IPP value: 4.28 IPP 4.28
  • SJR value: 2.404 SJR 2.404
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
  • h5-index value: 40 h5-index 40
Volume 8, issue 4
Geosci. Model Dev., 8, 975-1003, 2015
https://doi.org/10.5194/gmd-8-975-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Monitoring atmospheric composition and climate, research in...

Special issue: Coupled chemistry–meteorology modelling: status and...

Geosci. Model Dev., 8, 975-1003, 2015
https://doi.org/10.5194/gmd-8-975-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 07 Apr 2015

Model description paper | 07 Apr 2015

Tropospheric chemistry in the Integrated Forecasting System of ECMWF

J. Flemming et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Johannes Flemming on behalf of the Authors (16 Feb 2015)  Author's response    Manuscript
ED: Publish subject to minor revisions (Editor review) (23 Feb 2015) by Fiona O'Connor
AR by Johannes Flemming on behalf of the Authors (03 Mar 2015)  Author's response    Manuscript
ED: Publish as is (12 Mar 2015) by Fiona O'Connor
Publications Copernicus
Download
Short summary
We describe modules for atmospheric chemistry, wet and dry deposition and lightning NO production, which have been newly introduced in ECMWF's weather forecasting model. With that model, we want to forecast global air pollution as part of the European Copernicus Atmosphere Monitoring Service. We show that the new model results compare as well or better with in situ and satellite observations of ozone, CO, NO2, SO2 and formaldehyde as the previous model.
We describe modules for atmospheric chemistry, wet and dry deposition and lightning NO...
Citation