Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 3
Geosci. Model Dev., 9, 1087–1109, 2016
https://doi.org/10.5194/gmd-9-1087-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 1087–1109, 2016
https://doi.org/10.5194/gmd-9-1087-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 18 Mar 2016

Model description paper | 18 Mar 2016

ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change

Surendra Adhikari et al.
Viewed  
Total article views: 3,746 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,282 1,333 131 3,746 1,259 101 139
  • HTML: 2,282
  • PDF: 1,333
  • XML: 131
  • Total: 3,746
  • Supplement: 1,259
  • BibTeX: 101
  • EndNote: 139
Views and downloads (calculated since 10 Nov 2015)
Cumulative views and downloads (calculated since 10 Nov 2015)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 21 Sep 2019
Publications Copernicus
Download
Short summary
We present a numerically accurate, computationally efficient, (km-scale) high-resolution model for gravitationally consistent relative sea level that, unlike contemporary state-of-the-art models, operates efficiently on an unstructured mesh. The model is useful for earth system modeling and space geodesy. A straightforward and computationally less burdensome coupling to a dynamical ice-sheet model, for example, allows a refined and realistic simulation of fast-flowing outlet glaciers.
We present a numerically accurate, computationally efficient, (km-scale) high-resolution model...
Citation