Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Geosci. Model Dev., 9, 125-135, 2016
https://doi.org/10.5194/gmd-9-125-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Model description paper
19 Jan 2016
Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework
A. J. G. Baumgaertner1, P. Jöckel2, A. Kerkweg3, R. Sander4, and H. Tost3 1Department of Engineering, Aerospace Sciences, University of Colorado, Boulder, CO, USA
2German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, 82234 Weßling, Germany
3Institute for Physics of the Atmosphere, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
4Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, Germany
Abstract. The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the Community Atmosphere Model (CAM) atmospheric dynamical cores, especially the state-of-the-art spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare three different atmospheric dynamical cores within MESSy. Additionally, the CESM1 land, river, sea ice, glaciers and ocean component models can be used in CESM1/MESSy simulations, allowing the use of MESSy as a comprehensive Earth system model (ESM). For CESM1/MESSy set-ups, the MESSy process and diagnostic submodels for atmospheric physics and chemistry are used together with one of the CESM1(CAM) dynamical cores; the generic (infrastructure) submodels support the atmospheric model component. The other CESM1 component models, as well as the coupling between them, use the original CESM1 infrastructure code and libraries; moreover, in future developments these can also be replaced by the MESSy framework. Here, we describe the structure and capabilities of CESM1/MESSy, document the code changes in CESM1 and MESSy, and introduce several simulations as example applications of the system. The Supplements provide further comparisons with the ECHAM5/MESSy atmospheric chemistry (EMAC) model and document the technical aspects of the connection in detail.

Citation: Baumgaertner, A. J. G., Jöckel, P., Kerkweg, A., Sander, R., and Tost, H.: Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework, Geosci. Model Dev., 9, 125-135, https://doi.org/10.5194/gmd-9-125-2016, 2016.
Publications Copernicus
Download
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System...
Share