Articles | Volume 9, issue 4
https://doi.org/10.5194/gmd-9-1477-2016
https://doi.org/10.5194/gmd-9-1477-2016
Development and technical paper
 | 
20 Apr 2016
Development and technical paper |  | 20 Apr 2016

On computation of Hough functions

Houjun Wang, John P. Boyd, and Rashid A. Akmaev

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023,https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary

Cited articles

Andrews, D., Holton, J., and Leovy, C.: Middle Atmosphere Dynamics, Academic Press, Inc., New York, 1987.
Bailey, P., Everitt, W., and Zettl, A.: Computing eigenvalues of singular Sturm-Liouville problems, Results Math., 20, 391–423, https://doi.org/10.1007/BF03323182, 1991.
Boyd, J. P.: Planetary waves and the semiannual wind oscillation in the tropical upper stratosphere, PhD thesis, Harvard University, 1976.
Boyd, J. P.: The choice of spectral functions on a sphere for boundary and eigenvalue problems: A comparison of Chebyshev, Fourier and Associated Legendre expansions, Mon. Weather Rev., 106, 1184–1191, 1978.
Boyd, J. P.: Chebyshev and Fourier Spectral Methods, Dover Publications, Inc., 2nd Edn., 2001.
Download
Short summary
We briefly survey numerical methods for computing eigenvalues and eigenfunctions for the Laplace tidal equation. In particular we compare two methods that have numerical or conceptual advantages over the most commonly used methods. MATLAB codes are provided to facilitate their use. Researchers interested in atmospheric tidal analysis or in numerical methods for accurately computing eigenvalues of differential operators may find the paper helpful.