Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
    5.697
  • CiteScore value: 5.56 CiteScore
    5.56
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Volume 9, issue 4
Geosci. Model Dev., 9, 1523–1543, 2016
https://doi.org/10.5194/gmd-9-1523-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 9, 1523–1543, 2016
https://doi.org/10.5194/gmd-9-1523-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 21 Apr 2016

Development and technical paper | 21 Apr 2016

Evaluation of an operational ocean model configuration at 1/12° spatial resolution for the Indonesian seas (NEMO2.3/INDO12) – Part 2: Biogeochemistry

Elodie Gutknecht et al.

Related authors

Modelling the marine ecosystem of Iberia–Biscay–Ireland (IBI) European waters for CMEMS operational applications
Elodie Gutknecht, Guillaume Reffray, Alexandre Mignot, Tomasz Dabrowski, and Marcos G. Sotillo
Ocean Sci., 15, 1489–1516, https://doi.org/10.5194/os-15-1489-2019,https://doi.org/10.5194/os-15-1489-2019, 2019
Short summary

Related subject area

Oceanography
Tracking water masses using passive-tracer transport in NEMO v3.4 with NEMOTAM: application to North Atlantic Deep Water and North Atlantic Subtropical Mode Water
Dafydd Stephenson, Simon A. Müller, and Florian Sévellec
Geosci. Model Dev., 13, 2031–2050, https://doi.org/10.5194/gmd-13-2031-2020,https://doi.org/10.5194/gmd-13-2031-2020, 2020
Short summary
Sensitivity study on the main tidal constituents of the Gulf of Tonkin by using the frequency-domain tidal solver in T-UGOm
Violaine Piton, Marine Herrmann, Florent Lyard, Patrick Marsaleix, Thomas Duhaut, Damien Allain, and Sylvain Ouillon
Geosci. Model Dev., 13, 1583–1607, https://doi.org/10.5194/gmd-13-1583-2020,https://doi.org/10.5194/gmd-13-1583-2020, 2020
Short summary
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020,https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Mitigation of model bias influences on wave data assimilation with multiple assimilation systems using WaveWatch III v5.16 and SWAN v41.20
Jiangyu Li and Shaoqing Zhang
Geosci. Model Dev., 13, 1035–1054, https://doi.org/10.5194/gmd-13-1035-2020,https://doi.org/10.5194/gmd-13-1035-2020, 2020
Short summary
MOMSO 1.0 – an eddying Southern Ocean model configuration with fairly equilibrated natural carbon
Heiner Dietze, Ulrike Löptien, and Julia Getzlaff
Geosci. Model Dev., 13, 71–97, https://doi.org/10.5194/gmd-13-71-2020,https://doi.org/10.5194/gmd-13-71-2020, 2020
Short summary

Cited articles

Allen, G. R.: Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes, Aquat. Conserv., 18, 541–556, https://doi.org/10.1002/aqc.880, 2008.
Allen, G. R. and Werner, T. B.: Coral Reef Fish Assessment in the “Coral Triangle” of Southeastern Asia, Environ. Biol. Fish., 65, 209–2014, https://doi.org/10.1023/A:1020093012502, 2002.
Alongi, D. A., da Silva, M., Wasson, R. J., and Wirasantosa, S.: Sediment discharge and export of fluvial carbon and nutrients into the Arafura and Timor Seas: A regional synthesis, Mar. Geol., 343, 146–158, https://doi.org/10.1016/j.margeo.2013.07.004, 2013.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006.
Ayers, J. M., Strutton, P. G., Coles, V. J., Hood, R. R., and Matear, R. J.: Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity, Geophys. Res. Lett., 41, 5060–5067, https://doi.org/10.1002/2014GL060593, 2014.
Publications Copernicus
Download
Short summary
An operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries (INDESO project). Here we describe the skill assessment of the physical-biogeochemical coupled model configuration. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time: phasing of chlorophyll bloom, nutrient and oxygen distributions, water mass transformation across the archipelago.
An operational ocean forecasting system was developed to monitor the state of the Indonesian...
Citation