Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2315-2016
https://doi.org/10.5194/gmd-9-2315-2016
Model description paper
 | 
06 Jul 2016
Model description paper |  | 06 Jul 2016

An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1)

Kristian Förster, Florian Hanzer, Benjamin Winter, Thomas Marke, and Ulrich Strasser

Related authors

Decadal re-forecasts of glacier climatic mass balance
Larissa van der Laan, Anouk Vlug, Adam A. Scaife, Fabien Maussion, and Kristian Förster
EGUsphere, https://doi.org/10.5194/egusphere-2024-387,https://doi.org/10.5194/egusphere-2024-387, 2024
Short summary
Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach
Benjamin Winter, Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 20, 1689–1703, https://doi.org/10.5194/nhess-20-1689-2020,https://doi.org/10.5194/nhess-20-1689-2020, 2020
Short summary
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018,https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018,https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Retrospective forecasts of the upcoming winter season snow accumulation in the Inn headwaters (European Alps)
Kristian Förster, Florian Hanzer, Elena Stoll, Adam A. Scaife, Craig MacLachlan, Johannes Schöber, Matthias Huttenlau, Stefan Achleitner, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1157–1173, https://doi.org/10.5194/hess-22-1157-2018,https://doi.org/10.5194/hess-22-1157-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Modelling wind farm effects in HARMONIE–AROME (cycle 43.2.2) – Part 1: Implementation and evaluation
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024,https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Analytical and adaptable initial conditions for dry and moist baroclinic waves in the global hydrostatic model OpenIFS (CY43R3)
Clément Bouvier, Daan van den Broek, Madeleine Ekblom, and Victoria A. Sinclair
Geosci. Model Dev., 17, 2961–2986, https://doi.org/10.5194/gmd-17-2961-2024,https://doi.org/10.5194/gmd-17-2961-2024, 2024
Short summary
Challenges of constructing and selecting the “perfect” boundary conditions for the large-eddy simulation model PALM
Jelena Radović, Michal Belda, Jaroslav Resler, Kryštof Eben, Martin Bureš, Jan Geletič, Pavel Krč, Hynek Řezníček, and Vladimír Fuka
Geosci. Model Dev., 17, 2901–2927, https://doi.org/10.5194/gmd-17-2901-2024,https://doi.org/10.5194/gmd-17-2901-2024, 2024
Short summary
A machine learning approach for evaluating Southern Ocean cloud radiative biases in a global atmosphere model
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024,https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Decision Support System version 1.0 (DSS v1.0) for air quality management in Delhi, India
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024,https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary

Cited articles

Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: An overview of weather type models, Journal de la Société Française de Statistique, 156, 101–113, 2015.
Alduchov, O. and Eskridge, R.: Improved Magnus' form approximation of saturation vapor pressure, Tech. rep., Department of Commerce, Asheville, NC (United States), https://doi.org/10.2172/548871, 1997.
Alerta Rio: Dados Meteorológicos do Sistema de Alerta de Chuvas da Prefeitura do Rio de Janeiro (Meteorological data of the urban floods warning system Alerta Rio of the Prefecture Rio de Janeiro), available at: http://alertario.rio.rj.gov.br/ (last access: 1 March 2016), 2015.
Ångström, A.: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation, Q. J. Roy. Meteor. Soc., 50, 121–126, https://doi.org/10.1002/qj.49705021008, 1924.
Anis, M. R. and Rode, M.: A new magnitude category disaggregation approach for temporal high-resolution rainfall intensities, Hydrol. Process., 29, 1119–1128, https://doi.org/10.1002/hyp.10227, 2014.
Download
Short summary
For many applications in geoscientific modelling hourly meteorological time series are required, which generally cover shorter periods of time compared to daily time series. We present an open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST) capable of disaggregating temperature, precipitation, humidity, wind speed, and shortwave radiation (i.e. making 24 out of 1 value). Results indicate a good reconstruction of diurnal features at five sites in different climates.