Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 7 | Copyright
Geosci. Model Dev., 9, 2391-2406, 2016
https://doi.org/10.5194/gmd-9-2391-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 12 Jul 2016

Development and technical paper | 12 Jul 2016

Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)

Allison H. Baker et al.
Related authors
Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)
Daniel J. Milroy, Allison H. Baker, Dorit M. Hammerling, and Elizabeth R. Jessup
Geosci. Model Dev., 11, 697-711, https://doi.org/10.5194/gmd-11-697-2018,https://doi.org/10.5194/gmd-11-697-2018, 2018
Evaluating lossy data compression on climate simulation data within a large ensemble
Allison H. Baker, Dorit M. Hammerling, Sheri A. Mickelson, Haiying Xu, Martin B. Stolpe, Phillipe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samarasinghe, Francesco De Simone, Francesco Carbone, Christian N. Gencarelli, John M. Dennis, Jennifer E. Kay, and Peter Lindstrom
Geosci. Model Dev., 9, 4381-4403, https://doi.org/10.5194/gmd-9-4381-2016,https://doi.org/10.5194/gmd-9-4381-2016, 2016
P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0
Xiaomeng Huang, Qiang Tang, Yuheng Tseng, Yong Hu, Allison H. Baker, Frank O. Bryan, John Dennis, Haohuan Fu, and Guangwen Yang
Geosci. Model Dev., 9, 4209-4225, https://doi.org/10.5194/gmd-9-4209-2016,https://doi.org/10.5194/gmd-9-4209-2016, 2016
A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0)
A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. E. Eaton, J. Edwards, C. Hannay, S. A. Mickelson, R. B. Neale, D. Nychka, J. Shollenberger, J. Tribbia, M. Vertenstein, and D. Williamson
Geosci. Model Dev., 8, 2829-2840, https://doi.org/10.5194/gmd-8-2829-2015,https://doi.org/10.5194/gmd-8-2829-2015, 2015
Related subject area
Climate and Earth System Modeling
UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187-3213, https://doi.org/10.5194/gmd-11-3187-2018,https://doi.org/10.5194/gmd-11-3187-2018, 2018
Fast sensitivity analysis methods for computationally expensive models with multi-dimensional output
Edmund Ryan, Oliver Wild, Apostolos Voulgarakis, and Lindsay Lee
Geosci. Model Dev., 11, 3131-3146, https://doi.org/10.5194/gmd-11-3131-2018,https://doi.org/10.5194/gmd-11-3131-2018, 2018
The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models
Hua Song, Zhibo Zhang, Po-Lun Ma, Steven Ghan, and Minghuai Wang
Geosci. Model Dev., 11, 3147-3158, https://doi.org/10.5194/gmd-11-3147-2018,https://doi.org/10.5194/gmd-11-3147-2018, 2018
A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis
Vanessa Haverd, Benjamin Smith, Lars Nieradzik, Peter R. Briggs, William Woodgate, Cathy M. Trudinger, Josep G. Canadell, and Matthias Cuntz
Geosci. Model Dev., 11, 2995-3026, https://doi.org/10.5194/gmd-11-2995-2018,https://doi.org/10.5194/gmd-11-2995-2018, 2018
The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation
Jian Cao, Bin Wang, Young-Min Yang, Libin Ma, Juan Li, Bo Sun, Yan Bao, Jie He, Xiao Zhou, and Liguang Wu
Geosci. Model Dev., 11, 2975-2993, https://doi.org/10.5194/gmd-11-2975-2018,https://doi.org/10.5194/gmd-11-2975-2018, 2018
Cited articles
Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N., Nychka, D., Mickelson, S. A., Edwards, J., Vertenstein, M., and Wegener, A.: A Methodology for Evaluating the Impact of Data Compression on Climate Simulation Data, in: Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing, HPDC '14, 203–214, 2014.
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015.
Box, G. E. P. and Draper, N. R.: Response Surfaces, Mixtures, and Ridge Analyses, Second Edition, John Wiley and Sons, 2007.
Carson, II, J. S.: Model Verification and Validation, in: Proceedings of the 2002 Winter Simulation Conference, 52–58, 2002.
Clune, T. and Rood, R.: Software Testing and Verification in Climate Model Development, IEEE Software, 28, 49–55, https://doi.org/10.1109/MS.2011.117, 2011.
Publications Copernicus
Download
Short summary
Software quality assurance is critical to detecting errors in large, complex climate simulation codes. We focus on ocean model simulation data in the context of an ensemble-based statistical consistency testing approach developed for atmospheric data. Because ocean and atmosphere models have differing characteristics, we develop a new statistical tool to evaluate ocean model simulation data that provide a simple, subjective, and systematic way to detect errors and instil model confidence.
Software quality assurance is critical to detecting errors in large, complex climate simulation...
Citation
Share