Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 7 | Copyright
Geosci. Model Dev., 9, 2391-2406, 2016
https://doi.org/10.5194/gmd-9-2391-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 12 Jul 2016

Development and technical paper | 12 Jul 2016

Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)

Allison H. Baker et al.
Related authors
Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)
Daniel J. Milroy, Allison H. Baker, Dorit M. Hammerling, and Elizabeth R. Jessup
Geosci. Model Dev., 11, 697-711, https://doi.org/10.5194/gmd-11-697-2018,https://doi.org/10.5194/gmd-11-697-2018, 2018
Evaluating lossy data compression on climate simulation data within a large ensemble
Allison H. Baker, Dorit M. Hammerling, Sheri A. Mickelson, Haiying Xu, Martin B. Stolpe, Phillipe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samarasinghe, Francesco De Simone, Francesco Carbone, Christian N. Gencarelli, John M. Dennis, Jennifer E. Kay, and Peter Lindstrom
Geosci. Model Dev., 9, 4381-4403, https://doi.org/10.5194/gmd-9-4381-2016,https://doi.org/10.5194/gmd-9-4381-2016, 2016
P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0
Xiaomeng Huang, Qiang Tang, Yuheng Tseng, Yong Hu, Allison H. Baker, Frank O. Bryan, John Dennis, Haohuan Fu, and Guangwen Yang
Geosci. Model Dev., 9, 4209-4225, https://doi.org/10.5194/gmd-9-4209-2016,https://doi.org/10.5194/gmd-9-4209-2016, 2016
A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0)
A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. E. Eaton, J. Edwards, C. Hannay, S. A. Mickelson, R. B. Neale, D. Nychka, J. Shollenberger, J. Tribbia, M. Vertenstein, and D. Williamson
Geosci. Model Dev., 8, 2829-2840, https://doi.org/10.5194/gmd-8-2829-2015,https://doi.org/10.5194/gmd-8-2829-2015, 2015
Related subject area
Climate and Earth System Modeling
Compact Modeling Framework v3.0 for high-resolution global ocean–ice–atmosphere models
Vladimir V. Kalmykov, Rashit A. Ibrayev, Maxim N. Kaurkin, and Konstantin V. Ushakov
Geosci. Model Dev., 11, 3983-3997, https://doi.org/10.5194/gmd-11-3983-2018,https://doi.org/10.5194/gmd-11-3983-2018, 2018
A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo
Alf Kirkevåg, Alf Grini, Dirk Olivié, Øyvind Seland, Kari Alterskjær, Matthias Hummel, Inger H. H. Karset, Anna Lewinschal, Xiaohong Liu, Risto Makkonen, Ingo Bethke, Jan Griesfeller, Michael Schulz, and Trond Iversen
Geosci. Model Dev., 11, 3945-3982, https://doi.org/10.5194/gmd-11-3945-2018,https://doi.org/10.5194/gmd-11-3945-2018, 2018
LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17)
Taimaz Bahadory and Lev Tarasov
Geosci. Model Dev., 11, 3883-3902, https://doi.org/10.5194/gmd-11-3883-2018,https://doi.org/10.5194/gmd-11-3883-2018, 2018
An ensemble of AMIP simulations with prescribed land surface temperatures
Duncan Ackerley, Robin Chadwick, Dietmar Dommenget, and Paola Petrelli
Geosci. Model Dev., 11, 3865-3881, https://doi.org/10.5194/gmd-11-3865-2018,https://doi.org/10.5194/gmd-11-3865-2018, 2018
sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in Python
Joy Merwin Monteiro, Jeremy McGibbon, and Rodrigo Caballero
Geosci. Model Dev., 11, 3781-3794, https://doi.org/10.5194/gmd-11-3781-2018,https://doi.org/10.5194/gmd-11-3781-2018, 2018
Cited articles
Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N., Nychka, D., Mickelson, S. A., Edwards, J., Vertenstein, M., and Wegener, A.: A Methodology for Evaluating the Impact of Data Compression on Climate Simulation Data, in: Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing, HPDC '14, 203–214, 2014.
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015.
Box, G. E. P. and Draper, N. R.: Response Surfaces, Mixtures, and Ridge Analyses, Second Edition, John Wiley and Sons, 2007.
Carson, II, J. S.: Model Verification and Validation, in: Proceedings of the 2002 Winter Simulation Conference, 52–58, 2002.
Clune, T. and Rood, R.: Software Testing and Verification in Climate Model Development, IEEE Software, 28, 49–55, https://doi.org/10.1109/MS.2011.117, 2011.
Publications Copernicus
Download
Short summary
Software quality assurance is critical to detecting errors in large, complex climate simulation codes. We focus on ocean model simulation data in the context of an ensemble-based statistical consistency testing approach developed for atmospheric data. Because ocean and atmosphere models have differing characteristics, we develop a new statistical tool to evaluate ocean model simulation data that provide a simple, subjective, and systematic way to detect errors and instil model confidence.
Software quality assurance is critical to detecting errors in large, complex climate simulation...
Citation
Share