Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2441-2016
https://doi.org/10.5194/gmd-9-2441-2016
Methods for assessment of models
 | 
22 Jul 2016
Methods for assessment of models |  | 22 Jul 2016

Quantitative evaluation of numerical integration schemes for Lagrangian particle dispersion models

Huda Mohd. Ramli and J. Gavin Esler

Related subject area

Atmospheric sciences
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023,https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023,https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023,https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023,https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104, https://doi.org/10.5194/gmd-16-1083-2023,https://doi.org/10.5194/gmd-16-1083-2023, 2023
Short summary

Cited articles

Abramowitz, M. and Stegun, I.: Handbook of Mathematical Functions, Dover Publications, 1064 pp., 1965.
Barndorff-Nielsen, O. E. and Cox, D. R.: Asymptotic Techniques for Use in Statistics, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, 1989.
Berthet, G., Esler, J. G., and Haynes, P. H.: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere, J. Geophys. Res., 112, D18102, https://doi.org/10.1029/2006JD008295, 2007.
Cassiani, M., Stohl, A., and Eckhardt, S.: The dispersion characteristics of air pollution from the world's megacities, Atmos. Chem. Phys., 13, 9975–9996, https://doi.org/10.5194/acp-13-9975-2013, 2013.
Cassiani, M., Stohl, A., and Brioude, J.: Lagrangian stochastic modelling of dispersion in the convective boundary layer with skewed turbulence conditions and a vertical density gradient: Formulation and implementation in the FLEXPART model, Bound.-Lay. Meteorol., 154, 367–390, 2015.
Download
Short summary
A rigorous methodology is presented to assess numerical integration schemes for stochastic models in atmospheric dispersion known as Lagrangian particle dispersion models. A series of one-dimensional test problems modelling dispersion in the atmospheric boundary layer is used to evaluate commonly used stochastic integration schemes. The results allow for optimal time-step selection for each scheme and recommendations to be made for use in operational models.