Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year 4.890
  • CiteScore value: 4.49 CiteScore 4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 51 Scimago H index 51
Volume 9, issue 7 | Copyright
Geosci. Model Dev., 9, 2471-2497, 2016
https://doi.org/10.5194/gmd-9-2471-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model experiment description paper 25 Jul 2016

Model experiment description paper | 25 Jul 2016

Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

Xylar S. Asay-Davis et al.
Related authors
Antarctic sub-shelf melt rates via PICO
Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann
The Cryosphere, 12, 1969-1985, https://doi.org/10.5194/tc-12-1969-2018,https://doi.org/10.5194/tc-12-1969-2018, 2018
Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model
G. R. Leguy, X. S. Asay-Davis, and W. H. Lipscomb
The Cryosphere, 8, 1239-1259, https://doi.org/10.5194/tc-8-1239-2014,https://doi.org/10.5194/tc-8-1239-2014, 2014
Related subject area
Cryosphere
SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0)
Ghislain Picard, Melody Sandells, and Henning Löwe
Geosci. Model Dev., 11, 2763-2788, https://doi.org/10.5194/gmd-11-2763-2018,https://doi.org/10.5194/gmd-11-2763-2018, 2018
PIC v1.3: comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau
Lihui Luo, Zhongqiong Zhang, Wei Ma, Shuhua Yi, and Yanli Zhuang
Geosci. Model Dev., 11, 2475-2491, https://doi.org/10.5194/gmd-11-2475-2018,https://doi.org/10.5194/gmd-11-2475-2018, 2018
Numerical experiments on vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy balance model Crocus in SURFEX v8.0
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393-2418, https://doi.org/10.5194/gmd-11-2393-2018,https://doi.org/10.5194/gmd-11-2393-2018, 2018
Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales
Joshua K. Cuzzone, Mathieu Morlighem, Eric Larour, Nicole Schlegel, and Helene Seroussi
Geosci. Model Dev., 11, 1683-1694, https://doi.org/10.5194/gmd-11-1683-2018,https://doi.org/10.5194/gmd-11-1683-2018, 2018
Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257-1292, https://doi.org/10.5194/gmd-11-1257-2018,https://doi.org/10.5194/gmd-11-1257-2018, 2018
Cited articles
Calov, R., Greve, R., Abe-Ouchi, A., Bueler, E., Huybrechts, P., Johnson, J. V., Pattyn, F., Pollard, D., Ritz, C., Saito, F., and Tarasov, L.: Results from the Ice-Sheet Model Intercomparison Project-Heinrich Event INtercOmparison (ISMIP HEINO), J. Glaciol., 56, 371–383, https://doi.org/10.3189/002214310792447789, 2010.
Cornford, S. L. and Asay-Davis, X. S.: Ice-shelf surface, basal and bedrock topography data for the second Ice Shelf-Ocean Model Intercomparison Project (ISOMIP+), GFZ Data Services, https://doi.org/10.5880/PIK.2016.002, 2016.
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G., and Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549, https://doi.org/10.1016/j.jcp.2012.08.037, 2013.
De Rydt, J. and Gudmundsson, G. H.: Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge, J. Geophys. Res., 121, 865–880, https://doi.org/10.1002/2015JF003791, 2016.
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and oceanographic controls on melting beneath Pine Island Glacier, J. Geophys. Res.-Oceans, 119, 2420–2438, https://doi.org/10.1002/2013JC009513, 2014.
Publications Copernicus
Download
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming...
Citation
Share